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Abstract

Forward utility theory has been established independently by Musiela & Za-
riphopoulou [43, 44] and Henderson & Hobson [18] as an alternative to ex-
pected utility theory in the assessment of optimal investment strategies. After
its introduction, vast amounts of literature have analysed and extended the
theory in various directions. This thesis aims to give an accurate overview of
the current theory of forward utilities, summarise, unify and generalise the
main results from the literature, and assess its implications for the optimal
strategies. We introduce a new and very general class of forward utilities
called Itô-type forward performance processes, which contains all forward util-
ity functions that allow for an Itô decomposition, and thus all of the most
widely used forward utilities from the literature. This definition allows us to
generalise the results for the optimal investment strategies under such forward
performance criteria, and we find that these optimal strategies are always my-
opic if the Itô volatility process is not wealth-dependent. Furthermore, we find
that these optimal strategies ignore unhedgeable risk factors, except when the
external stochastic factor is introduced into the volatility process of the for-
ward utility. We then extend the definition of Itô-type forward utilities to
investment and consumption problems in a consistent way, which provides a
general framework for future extensions of the theory in this direction. We
give an explicit example of an Itô-type forward utility pair of investment
and consumption and compare its optimal strategies to their classical coun-
terparts. Moreover, we establish that the indifference pricing formula of a
European-type random endowment for (time-monotone) forward exponential
utilities has the same structural form as in the classical framework, but the
minimal entropy measure appearing in the classical approach is replaced by
the minimal martingale measure in the forward approach. Lastly, we point
out some potential areas for future research that arise from our analysis, which
can build on the generalisation and unification of the forward utility theory
provided herein.
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1 Introduction

In this thesis, we examine the theory of forward performance processes1, which has been
introduced independently by Musiela & Zariphopoulou [43, 44] and Henderson & Hobson
[18] and provides a new framework to assess optimal investor behaviour for some future
investment period. Classically, this issue has been examined by the concept of expected
utility theory and stochastic control techniques (see, e.g., the books by Pham [50] and
Rogers [53] for an overview of the standard concepts). Subsequently, a vast amount of
literature has emerged which studied forward performance processes and extended the
theory in various directions. The objective of this thesis is to provide a comprehensive
overview and summarise, unify and generalise the main results from the literature to
provide an accurate understanding of the existing theory of forward utility processes. We
further aim to compare the resulting optimal portfolios from the forward utility theory
to the ones known from the classical theory, first on a very general level in an incomplete
Itô-process market, and then consider different examples of popular market models to
get explicit solutions. We will analyse the optimal portfolios from a financial perspective
and in particular discuss the implications for risk management. We also consider an
optimal investment problem with consumption, which has rarely been studied so far in
the forward utility framework, and, moreover, look at the theory of indifference pricing
with forward utilities, which is an important concept for situations when the investor
is faced with a random future endowment that cannot be perfectly hedged, so that the
investor must decide how to incorporate this into her investment policy. Lastly, we want
to look at open questions that arise from our study to highlight interesting areas for
potential future research.

Our contribution is threefold: Firstly, we summarise and unify the key findings of the
literature to give an accurate overview of the current theory of forward utility functions.
By introducing a new class of so-called Itô-type forward utility functions (Definition 2) we
are able to generalise results regarding the optimal investment strategies (Theorem 4.2)
and can draw the insightful conclusions that - for this general class - external, unhedgeable
risk factors are ignored in the optimal strategies (Corollary 4.2.2), with the only exception
when the external stochastic factor is introduced into the volatility process, and in the
case that the volatility process of the Itô-type forward utility is not wealth-dependent,
the optimal portfolio is always the myopic portfolio (Corollary 4.2.1). The generality of
these results is highlighted by the fact that our newly defined class contains all forward
utility functions that allow an Itô decomposition, which is assured by some of the main
characterisation results from the literature, and thus all classes of forward performance
performance processes that allow for an explicit representation which have appeared in
the literature thus far. Secondly, we look at the natural extension to optimal investment
problems by allowing for consumption and summarise the (scarce) literature on forward
utilities of investment and consumption. We again manage to use characterisation results
from the literature to generalise our definition of Itô-type forward performance processes
to the case with investment and consumption (Definition 4) in a way such that our pre-
vious definition is contained as the special case when the utility from consumption is set
equal to zero. This allows us to reformulate the result established in El Karoui et al. [13]
and Källblad [25] regarding the optimal investment and consumption policies in terms

1Subsequently also called forward utility functions, or forward utilities.



2 MSc MCF Dissertation Trinity 2019

of this newly defined general class (Theorem 5.2). We construct an explicit, power-type
member of this class (Lemma 3), compute the resulting optimal investment and con-
sumption policy in a Black-Scholes market model and compare it with the optimal finite
and infinite horizon Merton strategies. We find that a scaling parameter in our forward
utility process allows us to obtain any fraction of wealth as the optimal consumption
path and that we can thus replicate the infinite horizon Merton strategy but, due to
the lack of horizon dependence in the forward approach, not the finite horizon strategy.
However, we also highlight that a general class of forward utility pairs of investment and
consumption, which allows for an explicit representation and tractable solutions, is yet
to be characterised and remains an open problem for future research. Thirdly, we show
that using so-called time-monotone exponential forward performance criteria in a general
incomplete Itô-process market, the structure of the classical formula for the indifference
price of a European claim is recovered, but the minimal entropy measure appearing in
the classical formula is replaced by the minimal martingale measure in the new forward
formula (Theorem 6.2), again indicating that unhedgeable risk factors are ignored. As
a consequence, we can deduce that the marginal utility-based price of such a claim is
the expectation of the payoff with respect to the minimal martingale measure (Corollary
6.2.1), as opposed to the expected payoff under the minimal entropy measure in the clas-
sical framework. Results of this nature have appeared in previous works, but not in the
definitive and general form we establish herein. Lastly, we emphasise open questions and
possible areas for future research, such as duality theory, which is a huge and important
field in the classical theory, but little is known about the dual side of forward utilities.

The remainder of this thesis is structured as follows. In Section 2 we set up the
general Itô-process market model which will be used throughout this thesis. Section 3
introduces the concept of forward utility functions, gives a comprehensive overview of
the existing literature and highlights the main achievements that have been made thus
far. In Section 4, we consider the most widely studied application of forward utility func-
tions, namely optimal investment problems, and generalise existing results with respect
to optimal investment policies from the literature by means of our newly defined class of
Itô-type forward utilities and consider specific examples of market models to compare the
optimal strategies of the classical versus forward approach. We also highlight its financial
implications, in particular for risk management. In Section 5 we consider the forward
utility framework of optimal investment with consumption. After reviewing the existing
literature which has covered this problem so far, we generalise the main results and give
an explicit example so that we can again compare the optimal strategies of classical ver-
sus forward utilities in a basic Black-Scholes model. Section 6 examines the theory of
utility indifference pricing of contingent claims and establishes a result that highlights the
similarities and differences in the general pricing formulae for a random (European-type)
claim in an incomplete Itô-process market for classical and (time-monotone) forward ex-
ponential utilities. Section 7 concludes by summarising the main results and discussing
open questions and potential areas of future research by considering important concepts
in the classical theory (such as duality theory or investment with consumption problems)
for which little is known so far for the forward framework, and by pointing out some of
the important newly arising ingredients in the forward performance framework, for which
a deeper and more thorough understanding is needed.
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2 Market model

Throughout this thesis we consider a financial market with d risky assets and one risk-
free asset (which could be thought of as a bank account or a government bond of a quasi
default-free economy). We model this stock market by considering the asset prices as
being Itô processes on an underlying probability space (Ω,F ,P) equipped with a filtration
F = (Ft)t∈T for some time set T , which may be finite (T = [0, T ] for some finite time
horizon T ), or infinite (T = [0,∞)). The stock prices are driven by an m-dimensional
Brownian motion, with m ≥ d, which means that the price process of the ith asset Si

evolves according to

dSit =Sit(µ
i
tdt+

m∑
j=1

σijt dW
j
t ), i = 1, ..., d, (1)

where (µt)t∈T ∈ Rm and (σt)t∈T ∈ Rd×m+ are F-adapted processes and are such that∫ t
0 ‖µs‖ + ‖σs‖2ds < ∞, almost surely, for all t ∈ T . Equivalently, we can write this in

matrix notation
dSt = diagd(St)(µtdt+ σtdWt), (2)

where diagd(x) denotes the d × d matrix whose diagonal is given by the vector x ∈ Rd
and whose off-diagonal entries are zero. The riskless asset satisfies

dBt =rtBtdt, B0 = 1, (3)

for the F-adapted interest rate process (rt)t∈T with
∫ t

0 |rs|ds <∞, almost surely, t ∈ T .

Standing assumptions We will make following standing assumptions and assume
them to hold throughout this thesis:
Assumption 1: Without loss of generality (w.l.o.g.), we assume that rt = 0. For the case
of a non-zero interest rate the results in this thesis still hold with any price or wealth-
process being replaced by its discounted counterpart.
Assumption 2: A standard assumption in a general incomplete Itô-market model is that
σt has full row-rank for every t ∈ T , see e.g. Remark 4.10 in the seminal book by Karatzas
& Shreve [29], which shows that if the rank of σt is d̂ < d, then we can find d̂ assets which
can replicate the remaining d − d̂ assets. We can thus define a d̂-dimensional financial
market with a volatility matrix σ̂t of full row-rank for all t ∈ T . Therefore, we can make
this assumption w.l.o.g..
Assumption 3: The process (λt)t∈T defined below (4) satisfies

∫ t
0 ‖λs‖

2ds < ∞, almost
surely, for all t ∈ T .2

By the assumption that the rows of the volatility matrix are linearly independent, the
matrix (σtσ

tr
t )−1 is well defined, where σtrt denotes the transpose of the matrix σt, and

we can define the relative risk process by

λt :=σtrt (σtσ
tr
t )−1µt, t ∈ T . (4)

2We note here that in most papers treating forward utilities λ is assumed to be bounded. This
unnecessarily restricts the choice of market models though, since models like the Heston model, or a
model with a Gaussian market price of risk are excluded from the analysis then.
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In many papers λ is referred to as market price of risk3. We remark though that the
market price of risk is only unique if the market is complete (m = d). In the case of an
incomplete market, i.e. m > d, λ is but one of the infinitely many solutions to the market
price of risk equations (5). Any solution, which is a process (qt)t∈T ∈ Rm satisfying

σtqt =µt, t ∈ T , (5)

defines a deflator
Z := E(−q ·W )· = e

∫ ·
0 −qsdWs− 1

2

∫ ·
0 q

2
sds (6)

so that ZS is a local martingale. In the case when Z is a true martingale (a sufficient
condition for this is given by the Novikov condition), Z is the density process of an
equivalent martingale measure (EMM). In fact, λ gives the density process of the minimal
martingale measure, denoted by QM . All other EMMs Q correspond to integrands q given
by

q = λ+ ν, (7)

with processes (νt)t∈T ∈ Rm satisfying

σtνt =0d, t ∈ T . (8)

We denote the set of EMMs by M and we will write ZQ for the density process corre-
sponding to Q ∈M.

3 The theory of forward performance processes

We consider the general situation of an investor who wants to invest her initial capital x
and is faced with the decision how to optimally allocate the capital to the different assets.
We denote by πit the present value of the amount of her wealth in asset i and by θit the
fraction of her wealth that is invested in the ith asset at time t. Then the investor’s goal
is to find the optimal self-financing trading strategy πi = (πit)t∈T for i = 0, ..., d, where
π0 denotes the amount invested in the risk-free asset. We assume that the investor can
trade continuously. The corresponding (controlled) wealth process is denoted by Xπ with
initial wealth Xπ

0 = x. We observe that Xπ
t =

∑d
i=0 π

i
t, which has the dynamics

dXπ
t = πtσt(λtdt+ dWt). (9)

The classical approach to tackle the optimal investment problem has been introduced
and solved by Merton [33, 34] and is given by first fixing an investment horizon T and
a utility function4 U at the end of the investment period. Throughout this thesis we
assume a utility function to be a twice differentiable, increasing and strictly concave
function satisfying the Inada conditions limx→x U

′(x) = ∞, limx→∞ U
′(x) = 0, where x

3A more accurate term, in fact, would be ’stock’s market price of risk’, as opposed to the market price
of risk associated with other risk factors.

4For a concise overview of the general idea and the most important examples of utility functions see
Gerber and Pafumi [16]; for a more comprehensive treatment we refer the reader to the book by Arrow
[2].



5 MSc MCF Dissertation Trinity 2019

denotes the lower boundary of the domain of U . The concavity reflects the risk-aversion
of the investor. The agent’s objective is to maximise expected terminal utility

E[U(Xπ
T )]→ max!, (10)

where the maximum is taken over the set of admissible trading strategies, which is denoted
by A and contains all strategies (πt)0≤t≤T which are adapted, self-financing, with wealth

bounded from below and satisfy
∫ T

0 ‖σtπt‖
2dt <∞, almost surely. To solve problem (10)

one typically defines the performance process

Hπ(Xπ
t , t) =E[U(Xπ

T )|Ft], 0 ≤ t ≤ T, π ∈ A. (11)

Standard results from optimal control theory show that the performance process (11) is
a supermartingale for any π ∈ A and a martingale for the optimal trading strategy π∗

(see, for example, Section 3.3 in Pham [50] or Chapter 1 in Rogers [53]). The process
H(Xπ∗

t , t) = ess supπ∈AH
π(Xπ

t , t) is called the value function process.
Musiela & Zariphopoulou in a series of papers ([43, 44, 45, 47]) have critiqued the

notion that fixing at the outset the trading horizon as well as the investor’s future pref-
erences seems unnatural. They argue that future preferences can change over time as the
market environment evolves and that it is rarely the case that an investment problem
ends at a given point in time in the future, which moreover - from a pricing perspective
in the theory of indifference pricing - restricts the set of claims that can be considered
to the ones with a maturity smaller than T . For these reasons, they proposed a new
framework to assess the performance of a trading strategy. They first introduce their
so-called forward performance process in [43] for a binomial market model and extend it
in [44] to the continuous case in an Itô-type market, where they define it as follows:

Definition 1. An F-adapted process
(
Ut(·)

)
t≥0

is a forward performance process, if

i) the mapping x 7→ Ut(x) is strictly concave and increasing, for all t ≥ 0,

ii) for each π ∈ A, E[| Ut(Xπ
t ) |] <∞, and

E[Us(X
π
s )|Ft] ≤ Ut(Xπ

t ), s ≥ t,

iii) there exists π∗ ∈ A, such that

E[Us(X
π∗
s )|Ft] = Ut(X

π∗
t ), s ≥ t,

iv) at t = 0, U0(x) = U(x) for some utility function U , x ∈ domain(U).

In this approach, the investor specifies her utility function at the initial time, and
the performance process is then constructed forward in time, allowing the investor to
dynamically update her preferences as market information is revealed. Conditions ii)
and iii) require that the forward performance process is a supermartingale for any ad-
missible trading strategy and a martingale for the optimal one, thereby preserving the
characteristics of the traditional value function. Also note that the forward performance
process Ut(·) is defined for all t ≥ 0 and is hence not restricted to a specific investment
period. A similar framework has been introduced independently by Henderson & Hobson
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[18] at the same time, who also require the supermartingale and martingale conditions for
their so-called horizon-unbiased utility functions. The concept of forward utility functions
is subsequently extended in a series of papers from various authors: In [44] Musiela &
Zariphopoulou show how a certain class of forward utilities can be constructed by combin-
ing a differential input corresponding to the investor’s risk-aversion with stochastic inputs
which capture the changes in the market environment (see also Theorem 4.1 herein). In
the special case when the stochastic inputs are non-random, the forward utility is non-
random as well. This subclass of performance criteria has zero volatility and is called
time-monotone forward utilities. It is further studied in [45] and [47]: In [45] the authors
show how the differential input function can be characterised by a strictly increasing (in
space) function h(x, t) solving the backward heat equation and further how h(x, t) can be
represented in an integral form with respect to some finite Borel measure. The optimal
portfolio and wealth process can then be expressed in terms of h and the market inputs.
These results are used in [47] to establish that under time-monotone forward criteria the
initial preferences fully characterise the future optimal strategies, given the initial prefer-
ences have an integral representation with respect to a finite Borel measure. In Källblad et
al. [26] forward performance criteria are combined with ambiguity-averse portfolio selec-
tion and the concept of so-called robust forward criteria is introduced, which aims to keep
the characteristic properties of forward utility functions, whilst being robust with respect
to model uncertainty. In a recent extension, Angoshtari et al. [1] introduced a discrete-
time forward performance process moving away from the assumption of continuous-time
updating of preferences and market assessments, and they provide an algorithm to dy-
namically construct such predictable performance processes in a binomial market model
with dynamically updated parameters. Most recently, He et al. [17] aimed to combine
the theories of (time-monotone) forward utilities and of rank-dependent utilities - which
provide an important alternative to expected utility theory by weakening the indepen-
dence axiom (the theory of rank-dependent utilities has been introduced by Quiggin, see
[51, 52]) - in a consistent manner by combining a forward utility and a distortion process.

While the class of time-monotone performance processes is particularly popular be-
cause the expressions are tractable and allow for the computation of explicit solutions,
various attempts have been made to give a general characterisation of forward utility
functions. Musiela & Zariphopoulou [46] derive an SPDE (see equations (13) and (14)
in the next section) that describes the dynamics of a forward performance process that
allows an Itô decomposition, and compare it with the SPDE that arises from the value
function of the traditional approach. A more rigorous treatment of SPDEs and related
SDEs arising in the context of forward utilities is given by El Karoui & Mrad [14]. Shkol-
nikov et al. [54] examine the asymptotic behaviour of solutions to the SPDE that take
a specific form by depending explicitly on non-traded stochastic factors in an incomplete
market, and provide explicit formulae for the leading order and first-order correction
terms. Nadtochiy and Tehranchi [48] also study the SPDE, which in fact is an ana-
logue to an ill-posed HJB, and in the case when the SPDE can be reduced to a linear
parabolic equation they derive integral expressions for the positive solutions. The special
class of homothetic forward utilities - which are performance processes with a depen-
dence on wealth in power form - and their characterisation is studied in Nadtochiy &
Zariphopoulou [49] and Liang & Zariphopoulou [32]. Since for the classical approach a
huge and important field of study is the dual side of the problem, which helps to char-
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acterise the value function and solutions to the optimal control problem (see, e.g., Pham
[50], Chapter 7), a natural approach to characterise forward performance processes would
be to consider their dual side. However, duality has rarely been studied thus far in the
forward utility framework. Zitkovic [59] provides a first dual characterisation of forward
utilities and establishes necessary and sufficient conditions for exponential-type forward
performance processes to be time-consistent. At the same time Berrier et al. [4] indepen-
dently established necessary and sufficient conditions for a utility process to be a forward
utility by imposing conditions on its convex conjugate. More recently, Choulli and Ma
[11] took another approach and characterised forward utilities coming from HARA initial
conditions via martingale processes by using the concept of Hellinger processes. The the-
ory of forward utilities also found applications not only in optimal investment problems
(Zariphopoulou [57] and Musiela & Zariphopoulou [41, 42]), but also in the domain of
indifference pricing (Musiela & Zariphopoulou [43], Leung et al. [31], Musiela et al. [40])
as well as risk-measurement (Zitkovic & Zariphopoulou [58] and Chong et al. [9]).

As we will see later, an important quantity in the representation of the optimal strat-
egy is the local risk-tolerance function, which for a performance process u(·, ·) ∈ C2,0 is
given by

R(x, t) =− ux(x, t)

uxx(x, t)
, t ∈ T . (12)

The asymptotic behaviour of the local risk tolerance function for large x and t is studied
by Geng and Zariphopoulou [15]

4 Optimal investment under forward utilities

In this section we examine the optimal investment strategies that arise from forward
performance criteria. We will first introduce a new class of forward utility functions called
Itô-type forward utility processes, which uses the characterising SPDE derived in [46] and
[14] and comprises all forward performance processes that have an Itô decomposition, so
in particular this class contains the most widely used classes of performance processes
that appeared in the literature so far as special cases. The new definition allows us to get
very general results for the optimal investment strategies (Theorem 4.2) and to draw some
interesting conclusions regarding the structure of the strategies that arise from forward
utilities (Corollaries 4.2.1 and 4.2.2). After deriving the general results, we will consider
specific examples of market models and of specific forward utility functions (which have
an explicit solution) and examine how their optimal policies coincide or differ from the
optimal strategies from the classical framework.

4.1 Classes of forward performance processes

Definition 2. We call a function U(·, ·) : R × [0,∞) → R an Itô-type forward utility
process, if it satisfies

a) U is a forward performance process, i.e. satisfies Definition 1,

b) U ∈ C3,0(R× R+),
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c) U has the Itô decomposition

dU(x, t) = b(x, t)dt+ v(x, t) · dWt, (13)

where v(·, ·) ∈ C2,0(Rm) is F-adapted, b(·, ·) is given by

b(x, t) =
1

2

‖Ux(x, t)λt + σtrt σt(σ
tr
t σt)

−1vx(x, t)‖2

Uxx(x, t)
, t ≥ 0, (14)

d) U satisfies the conditions given in Appendix A.1, so that the Itô-Ventzell formula5

can be applied to the process U(Xπ
t , t), t ≥ 0, for any admissible wealth process Xπ.

Remark 1. We point out that the object U(·, ·) in the above definition is a stochastic
process itself, even for deterministic inputs (x, t), as is shown by (13). Processes of
this form are also known in the literature as random fields or stochastic flows - for an
introduction see Section 1 in El Karoui & Mrad [14] or the book by Kunita [30]. One
could also use the notation Ut(x) instead of U(x, t) to emphasise this point.

Remark 2. The expression (14) for the drift has been derived in [46] and more rigorously
in [14], who show that any forward performance process which allows an Itô decomposition
must have a drift of this form. We introduce this particular class of forward performance
processes since it allows us to get very general results for investment strategies that arise
from performance processes that have an Itô decomposition. In fact, to the best of our
knowledge every forward utility function for which an explicit form has appeared in the
literature thus far is a member of this class; in particular the important class of forward
performance processes constructed from a differential and stochastic inputs, which is
introduced below.

In one of their first papers on forward utilities, Musiela and Zariphopoulou [44] intro-
duce a specific class of forward performance processes which are constructed by combining
a deterministic function with stochastic inputs. The authors introduce the processes

dNt = Ntδt(λtdt+ dWt), N0 =1, (15)

dZt = Ztφt · dWt, Z0 =1, (16)

dAt = ‖λt + φt − δt‖2dt, A0 =0, (17)

where (δt)t≥0 ∈ Rm×1, (φt)t≥0 ∈ Rm×1 are F-adapted, bounded by a deterministic con-
stant6 and satisfy σtrt σt(σ

tr
t σt)

−1δt = δt, σ
tr
t σt(σ

tr
t σt)

−1φt = φt, t ≥ 0, and λt is given
by (4). The process At =

∫ t
0 ‖λs‖

2ds is commonly known in the literature as the mean-
variance tradeoff process and is used here - slightly adapted - to rescale the time argument.
N is a numeraire with respect to which the wealth is measured. The authors call the
process Z market view process since it corresponds to a change of measure and thus
allows for flexibility to incorporate ”if the investor has different views about the future
market movements or faces trading constraints” [44], p. 168. They establish following
main characterisation theorem (cf. Theorem 4 in [44]).

5For a comprehensive discussion with all technical details regarding the Itô-Ventzell formula, also called
generalised Itô formula, see Chapter 3 of Kunita [30].

6Again, the condition
∫ t
0
‖δs‖2 + ‖φs‖2ds <∞, a.s., t ∈ T , would be sufficient here.
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Theorem 4.1. Let u(·, ·) ∈ C4,1(R × R+), such that u(·, ·) is concave and increasing in
the spatial argument and satisfies the PDE

utuxx =
1

2
u2
x (18)

u(x, 0) = U(x) (19)

for some utility function U . Then the process

Ut(x) =u
( x
Nt
, At

)
Zt, t ≥ 0, (20)

is a forward utility process corresponding to the initial condition U0(x) = U(x).

Proof. To show that the process (20) indeed satisfies the defining properties of a forward
performance process (cf. Definition 1), one needs to apply Itô’s Lemma to the process
defined in (20) with x being replaced by the wealth process Xπ, whose dynamics are
given by (9), and use the definitions of the differential and stochastic inputs. A detailed
version of the proof can be found in the Appendix of [44].

A special case of this class of utility functions is given by the choices δt = φt = 0, which
means that N = Z = 1. One can easily verify that the resulting performance process
Ut(x) = u(x,At) is monotonically decreasing in time, and thus of finite variation. This
implies that the volatility coefficient from the Itô decomposition is given by v(x, t) = 0
for all (x, t) ∈ R×R+. Musiela & Zariphopoulou call this type of performance processes
time-monotone forward performance processes [45, 47].

Remark 3. By applying Itô’s Lemma to the forward performance process defined by
(20) (this is done in the proof of Lemma 2, see Equation (46)) one immediately sees that
the processes characterised in Theorem 4.1 have an Itô decomposition, and one can easily
check that the condition on the drift (14) is satisfied. Thus, these kinds of performance
processes are indeed members of the class of Itô-type forward utilities.

The above-described type of forward utilities is particularly popular in the literature
(see e.g. [45, 47]), since by specifying classical utility functions as initial conditions one
can solve the PDE (18) and compute the differential input functions corresponding to
the respective initial conditions. Consequently, one gets an explicit representation for the
forward performance process. We will show this below, where we consider the three most
widely used utility functions (see, e.g., Gerber and Pafumi [16]) for the initial condition

1. Power utility: U(x) =
xp

p
, p < 1, p 6= 0, x ∈ R+, (21)

2. Logarithmic utility: U(x) = log(x), x > 0, (22)

3. Exponential utility: U(x) =− e−αx, α > 0, x ∈ R. (23)

The power and logarithmic utility function belong to the class of hyperbolic absolute
risk aversion (HARA) utility functions, and the exponential utility function is the most
noted example for a constant absolute risk aversion (CARA) utility function.
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Lemma 1. The differential input functions u(·, ·) corresponding to the initial conditions
(21)-(23) as well as the respective forward performance processes and their risk tolerance
functions are given by

1. Power forward utility process:

u(x, t) =
xp

p
e
q
2
t, (x, t) ∈ R+ × R+, (24)

Ut(x) =
1

p

( x
Nt

)pe
q
2
AtZt, p ∈ (−∞, 1)\{0}, 1

p
+

1

q
= 1, (25)

R(x, t) =
x

(1− p)
, (26)

2. Logarithmic forward utility process:

u(x, t) = log(x)− t

2
, (x, t) ∈ R+ × R+, (27)

Ut(x) =
(

log
( x
Nt

)
− 1

2
At

)
Zt, (28)

R(x, t) = x, (29)

3. Exponential forward utility process:

u(x, t) = −e−αx+ t
2 , (x, t) ∈ R× R+, (30)

Ut(x) = − exp
(
− α

( x
Nt

)
+
At
2

)
Zt, α > 0, (31)

R(x, t) =
Nt

α
. (32)

Proof. These results can be found in [44], but without proof. Hence we give a rigorous
proof in Appendix A.2.

4.2 Optimal investment strategies

The following main result of this section gives the optimal investment strategy for Itô-
type forward performance processes in an incomplete Itô-process financial market. The
optimal strategy has appeared in the literature as part of the heuristic derivation of the
SPDE in Musiela & Zariphopoulou [46] and is also established and proven in El Karoui
& Mrad [14], see Theorem 3.1 i). However, the formulation of this result in terms of
the newly introduced Itô-type forward utilities, which emphasises the generality of this
result, is new.

Theorem 4.2. Let U be an Itô-type forward utility process as in Definition 2. Then the
optimal investment strategy is given by

π∗t =(σtσ
tr
t )−1σt

(
R(Xπ∗

t , t)λt −
1

Uxx(Xπ∗
t , t)

vx(Xπ∗
t , t)

)
, t ≥ 0. (33)
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Proof. We will give the proof for completeness; it follows the ideas in El Karoui & Mrad
[14], Theorem 3.1.

Let U be an Itô-type forward performance process satisfying Definition 2. Then we
can apply the Itô-Ventzell formula (see Theorem 3.3.1 in [30]) to derive

dU(Xπ
t , t) =b(Xπ

t , t)dt+ v(Xπ
t , t) · dWt + Ux(Xπ

t , t)dX
π
t +

1

2
Uxx(Xπ

t , t)d 〈Xπ〉t
+ vtrx (Xπ

t , t)d 〈W,Xπ〉t (34)

=
(
b(Xπ

t , t) + Ux(Xπ
t , t)π

tr
t σtλt +

1

2
Uxx(Xπ

t , t)(π
tr
t σt)(π

tr
t σt)

tr

+ vtrx (Xπ
t , t)σ

tr
t πt

)
dt+

(
Ux(Xπ

t , t)π
tr
t σt + v(Xπ

t , t)
)
· dWt. (35)

Now we impose the condition that for the optimal π∗ the process
(
U(Xπ∗

t , t)
)
t≥0

must be
a martingale. Hence we apply first order conditions

∂

∂π
: Ux(Xπ∗

t , t)σtλt + Uxx(Xπ∗
t , t)σtσ

tr
t π
∗ + σtvx(Xπ∗

t , t)
!

= 0, (36)

which gives us that the optimal control is given by

π∗t =− (σtσ
tr
t )−1σt

(Ux(Xπ∗
t , t)λt

Uxx(Xπ∗
t , t)

+
vx(Xπ∗

t , t)

Uxx(Xπ∗
t , t)

)
, t ≥ 0. (37)

Second order condition and the concavity of U(·, ·) assert that π∗t is indeed a supremum.
With the definition of the risk tolerance function (12) this establishes the result.

Corollary 4.2.1. Let U be an Itô-type forward utility process with v(t, x) = ϑ(t), so the
volatility of the forward performance does not depend on the wealth level x. Then the
optimal portfolio according to this forward performance criterion is always the myopic
portfolio

π∗t =(σtσ
tr
t )−1σtλtR(Xπ∗

t , t), t ≥ 0. (38)

We emphasise the generality of this statement, which holds for any Itô-type forward
utility process whose volatility process does not depend on the wealth argument, and in a
general incomplete Itô-process market. So far in the literature, this observation has only
been stated for time-monotone performance criteria in a single stochastic factor model
(d = 1,m = 2) in [57] and [46].

Corollary 4.2.2. Assume that the stock-price process is driven by only parts of the
Brownian motion, and some sources of randomness in the market are external stochas-
tic factors, which, for example, might be driving the volatility and/or market price of
risk process. Mathematically, let B := (W (1),W (2), ...,W (k)), which is a k-dimensional
Brownian motion7, where d ≤ k ≤ m, and assume that the wealth dynamics satisfy

dXπ
t = πtσt(λtdt+ dBt), (39)

7Without loss of generality we assume that the sources of randomness driving the stock price are in
the first k components of the Brownian motion W .
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for F-adapted processes (σt)t≥0 ∈ Rd×k and (λt)t≥0 ∈ Rk. Then the optimal strategy
of an Itô-type forward performance criterion U(·, ·) only depends on the components
of its volatility process - denoted by v̄(·, ·) ∈ Rm - which correspond to the sources of
randomness which are perfectly correlated with the Brownian motion driving the stock
price, by our assumption the first k components.

Proof. Let 0 ≤ d ≤ k ≤ m. Denote the first k components of the volatility process of the
forward performance criterion (cf. Itô decomposition (13)) by v(·, ·) and the remaining
m−k components by v⊥(·, ·), so that v̄ = (v, v⊥)tr ∈ Rm. Let λ̄ = (λ,0m−k)

tr ∈ Rm, and
σ̄ = (σ,0d×m−k) ∈ Rd×m be the augmented market price of risk and volatility process
respectively. Then by Theorem 4.2 the optimal investment strategy in the forward utility
framework with the Itô-type performance process U(·, ·) is given by

π∗t = (σ̄tσ̄
tr
t )−1σ̄t

(
R(Xπ∗

t , t)λ̄t −
1

Uxx(Xπ∗
t , t)

v̄x(Xπ∗
t , t)

)
(40)

= (σtσ
tr
t )−1σt

(
R(Xπ∗

t , t)λt −
1

Uxx(Xπ∗
t , t)

vx(Xπ∗
t , t)

)
, (41)

since in the first line we have that

σ̄tv̄x(Xπ∗
t , t) =

(
σt,0d×m−k

)(
vx(Xπ∗

t , t), v⊥x (Xπ∗
t , t)

)tr
=
(
σtvx(Xπ∗

t , t),0d×m−k
)
, (42)

and analogously for σ̄tλ̄t, which proves the claim.

Remark 4. Corollary 4.2.2 implies that unhedgeable risk is ignored in the optimal strate-
gies from Itô-type forward performance processes, since the coefficients of the stochastic
factors which cannot be perfectly replicated have no impact on the optimal strategy. Only
if the external stochastic factor is included into the components of the volatility process
driving the stock price, e.g. by writing v(Xt, Yt, t), one can make the optimal strategy
dependent on the external stochastic factor Y . This is an important insight for risk man-
agers, if they want to include some extra hedging demand into their risk management
strategy to account for the external risk factors.

In order to get a better understanding of the implications of the result of Theorem 4.2
and the corollaries, we will subsequently consider the optimal strategies for the forward
performance processes characterised in Theorem 4.1, which form a sub-class of Itô-type
forward processes, as we noted in Remark 3. The explicit expression for the risk tolerance
function of some important members of this type of forward utilities (cf. Lemma 1) allows
for comparison of their optimal strategies with their classical counterparts, which will be
done in Section 4.3. The next Lemma gives the optimal strategy for this type of forward
utilities, a result which has already been formulated by Musiela and Zariphopoulou in [44,
46] (Theorem 8 and Example 6.2.3 respectively). However, the proof given below shows
how these results follow easily from the more general result of Theorem 4.1 established
herein.

Lemma 2. Let U be a forward performance process as characterised by Theorem 4.1.
Then the corresponding optimal investment strategy is given by

π∗t =(σtσ
tr
t )−1σt

(
R(Xπ∗

t , t)(λt + φt − δt) + δtX
∗
t

)
, t ≥ 0, (43)
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where we recall that the risk-tolerance function R(·, ·) is given by

R(Xπ∗
t , t) = −

∂
∂xUt(X

∗
t )

∂2

∂x2
Ut(Xπ∗

t )
= −

ux
(Xπ∗

t
Nt

, At
)
ZtNt

uxx
(Xπ∗

t
Nt

, At
)
Zt

. (44)

Proof. Since the differential input is by assumption smooth enough, we can apply Itô’s
formula to compute

dUt(x) = d
(
u
( x
Nt
, At
)
Zt

)
= Ztd

(
u
( x
Nt
, At
))

+ u
( x
Nt
, At
)
dZt + d

〈
u(
x

N
,A), Z

〉
t

(45)

and standard computations give that

dUt(x) =Zt

(
ut(

x

Nt
, At)‖λt + φt − δt‖2 + ux(

x

Nt
, At)

x

Nt
δtrt (δt − λt − φt)

+
1

2
uxx(

x

Nt
, At)

x2

N2
t

δtrt δt

)
dt+ Zt

(
u(

x

Nt
, At)φt − ux(

x

Nt
, At)

x

Nt
δt

)
· dWt. (46)

We observe that the volatility vector of Ut(·) is given by

v(x, t) = Zt

(
u
( x
Nt
, At
)
φt − ux

( x
Nt
, At
) x
Nt
δt

)
(47)

and thus we compute

vx(x, t) = Zt

(
ux
( x
Nt
, At
) 1

Nt
(φt − δt)− uxx

( x
Nt
, At
) x
N2
t

δt

)
(48)

=
∂

∂x
Ut(x)(φt − δt)−

∂2

∂x2
Ut(x)xδt. (49)

We plug this into the result from Theorem 4.2 and verify that

π∗t = (σtσ
tr
t )−1σt

(
R(X∗t , t)λt −

∂
∂xUt(X

π∗
t )

∂2

∂x2
Ut(Xπ∗

t )
(φt − δt) +

∂2

∂x2
Ut(X

π∗
t )

∂2

∂x2
Ut(Xπ∗

t )
Xπ∗
t δt

)
(50)

= (σtσ
tr
t )−1σt

(
R(X∗t , t)(λt + φt − δt) +Xπ∗

t δt

)
. (51)

Remark 5. The special case of time-monotone forward preferences is given by the choices
δt = φt = 0, which leads to v(x, t) = 0 in the Itô representation of U (cf. Equation (46)).
Thus Lemma 2 certifies that for these performance processes the optimal strategy will
always be the myopic portfolio8.

8This is also a direct consequence of Corollary 4.2.1.
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4.3 Examples and comparison of classical versus forward optimal strate-
gies

We now consider some examples of standard market models and compare the optimal
strategies from the classical approach and the forward approach. In the classical approach
the typical procedure to obtain the optimal investment strategy is as follows (see, e.g.,
Chapter 3 in Pham [50] for a rigorous treatment of the heuristically explained procedure
outlined herein). First, one writes down the market model (in particular the wealth
dynamics) and defines the value function. Then one applies the dynamic programming
principle to derive the HJB equation satisfied by the value function. Since the investment
horizon and the utility function are a priori fixed, one obtains a terminal condition for the
HJB and can thus - in some market models - solve it explicitly to get the value function,
which then allows one to deduce the optimal strategy.

In the forward utility framework, the computation of the optimal strategy typically
involves following three steps: In the first step, one writes down the market model, most
importantly the wealth dynamics. The next step involves specifying the forward utility
process satisfying conditions (i)-(iv) in Definition 1. By Theorem 4.1 one way to do this
is by specifying a differential as well as stochastic inputs. In the last step one computes
the dynamics of the forward performance process and derives the optimal strategy π∗ by
imposing the condition that the forward utility process is a martingale.

In order to enable comparability between the two approaches, we take the utility
function which serves as a terminal condition in the traditional approach and impose
it as initial condition of the corresponding forward performance process. We will focus
on the performance criteria constructed from a differential and stochastic inputs, and
specifically the ones given by Lemma 1, as they allow for explicit solutions.

Example 1: Black Scholes market model
The Black-Scholes market model9 consists of one risk-free and one risky asset, modelled

as in (1) with µt = µ, σt = σ being constants. We have that d = m = 1, therefore the
market is complete. The wealth process follows

dXπ
t =πtσ(λdt+ dWt), Xπ

0 = x. (52)

Classical approach We assume that the investor fixes an investment horizon T and
a utility function U(·). In the classical case with constant model parameters this problem
is often referred to as Merton problem. It is well-studied and serves as a popular example
to introduce stochastic control theory for finance (see, e.g., Rogers [53], Chapter 1, or
Pham [50], Chapters 2 and 3). Standard arguments which can be found in aforementioned
references show that the optimal control in feedback form is given by

π∗t =− λ

σ

ux(x, t)

uxx(x, t)
=
λ

σ
R(x, t), 0 ≤ t ≤ T, (53)

where u(·, ·) is the value function of the optimal control problem. This implies that for
the 3 different terminal utility functions (21)-(23) we obtain that the optimal policies are

9Also known as Black-Scholes-Merton market model.
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given by (the results can be found, e.g., in Monoyios [39])

1. Power utility: π∗t =
λ

σ

Xπ∗
t

(1− p)
, 0 ≤ t ≤ T, (54)

2. Logarithmic utility: π∗t =
λ

σ
Xπ∗
t , 0 ≤ t ≤ T, (55)

3. Exponential utility: π∗t =
λ

σα
, 0 ≤ t ≤ T. (56)

The optimal policy is to put a constant fraction of wealth into the risky asset in the case
of power and logarithmic utility (θt = λ

σ(1−p) and θt = λ
σ respectively) and to invest a

constant amount in the stock in the case of exponential preferences. We identify these
policies as the myopic portfolios.

Forward utility approach Using the risk tolerance functions of the time-monotone
forward utilities from Lemma 1, the results from Lemma 2 in the one-dimensional case
simplify to

1. Power forward utility: π∗t =
Xπ∗
t

(1− p)

(
λ+ φt − δt

)
σ

+Xπ∗
t

δt
σ
, t ≥ 0, (57)

2. Logarithmic forward utility: π∗t = Xπ∗
t

(
λ+ φt

)
σ

, t ≥ 0, (58)

3. Exponential forward utility: π∗t = Nt

(
λ+ φt − δt

)
σα

+Xπ∗
t

δt
σ
, t ≥ 0. (59)

Remark 6. We observe that in the case of constant model parameters the traditional
and the classical approach yield the same optimal policies if we use a time-monotone
forward performance process, for which φt = δt = 0. Since we know from classical
theory that a logarithmic performance criterion gives the myopic portfolio in a general
incomplete Itô-process market (see, e.g., Example 7.2 in Karatzas & Shreve [29]), the
classical optimal strategies can - for the logarithmic case - always be replicated by time-
monotone performance criteria.

Example 2: Stochastic factor model
Next, we consider an incomplete market model with one risky, one risk-free asset and a
stochastic factor driving the volatility and market price of risk process, so m = 2, d = 1.
The generic model is given by

dSt = Stµ(Yt)dt+ Stσ(Yt)dBt (60)

dYt = a(Yt)dt+ b(Yt)dB̃t, (61)

where µ(·), σ(·), a(·), b(·) are one-dimensional, adapted processes such that (60) and (61)
admit a strong solution. B and B̃ are one-dimensional Brownian motions with correlation
ρ, so we can rewrite the Y -dynamics as

dYt =a(Yt)dt+ b(Yt)(ρdBt + ρ̄dB⊥t ), ρ̄ =
√

1− ρ2, Corr(B,B⊥) = 0. (62)

The wealth dynamics are then given by

dXπ
t = πtσ(Yt)

(
λ(Yt)dt+ dBt

)
, (63)

where λ(Yt) = µ(Yt)
σ(Yt)

is the (one-dimensional) market price of risk.
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Classical approach As before, we assume that the investor chooses both a time
horizon and a terminal utility function and then aims to maximise expected terminal
utility. Zariphopoulou [57] shows that the optimal portfolio in feedback form is given by

π∗t =− λ(Yt)

σ(Yt)

ux
uxx
− ρ b(Yt)

σ(Yt)

uxy
uxx

, 0 ≤ t ≤ T. (64)

Solving the corresponding HJB equation for the 3 different terminal utility functions
yields (see Zariphopoulou [56] for a detailed derivation of the power-case, an analogue
approach yields the results for the other 2 cases, which can be found in [57], Section 3.1)

1. Power utility: π∗t =
λ(Yt)

σ(Yt)

Xπ∗
t

(1− p)
+

ρ

(1− qρ2)

1

(1− p)
b(Yt)

σ(Yt)

fy(t, y)

f(t, y)
Xπ∗
t , (65)

2. Logarithmic utility: π∗t =
λ(Yt)

σ(Yt)
Xπ∗
t , 0 ≤ t ≤ T, (66)

3. Exponential utility: π∗t =
λ(Yt)

σ(Yt)α
+

ρ

ρ̄2

b(Yt)

σ(Yt)α

hy(t, Yt)

h(t, Yt)
, 0 ≤ t ≤ T. (67)

for f(t, y) :=EP̃1 [exp
(
− 1

2
q(1− qρ2)

∫ T

t
λ(Ys)

2ds
)
|Yt = y], (68)

h(t, y) :=EP̃2 [exp
(
− ρ̄2

2

∫ T

t
λ(Ys)

2ds
)
|Yt = y], (69)

where P̃1, P̃2 are measures on (Ω,F) equivalent to P and such that Y has dynamics under
P̃1 and P̃2 respectively

dYt =
(
a(y)− ρqb(y)λ(y)

)
dt+ b(y)dW P̃1

t (70)

dYt =
(
a(y)− ρb(y)λ(y)

)
dt+ b(y)dW P̃2

t . (71)

Forward utility approach The introduction of the stochastic factor does not
change the structure of the wealth dynamics, which implies that we essentially get the
same results as in the Black-Scholes model (Example 1). However, we need to be a bit
careful and cannot immediately use the results from the previous example, because look-
ing back to the general optimal strategy of forward performance processes, we see that it
is given in terms of vector-valued (here m = 2) coefficients, whereas the wealth dynamic
in (63) is only one-dimensional. Hence we rewrite (63) as

dXπ
t =πtσ̄t(λ̄tdt+ dWt), (72)

for σ̄t = (σ(Yt), 0)tr, λ̄t = (λ(Yt), 0)tr. Then we can reuse the results from the previ-
ous example with the coefficients λ, σ, φt, δt replaced by the corresponding 2-dimensional
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processes (which we will denote with a bar, e.g. φ̄t = (φ1
t , φ

2
t )
tr).

1. Power f. utility: π∗t =(σ̄tσ̄t
tr)−1σ̄t

( Xπ∗
t

(1− p)
(λ̄t + φ̄t − δ̄t) + δ̄tX

π∗
t

)
(73)

=
Xπ∗
t

1− p

(
λ(Yt) + φ1

t − δ1
t

)
σ(Yt)

+Xπ∗
t

δ1
t

σ(Yt)
, t ≥ 0,

2. Logarithmic f. utility: π∗t =(σ̄tσ̄t
tr)−1σ̄t

(
Xπ∗
t (λ̄t + φ̄t − δ̄t) + δ̄tX

π∗
t

)
(74)

=Xπ∗
t

(
λ(Yt) + φ1

t

)
σ(Yt)

, t ≥ 0,

3. Exponential f. utility: π∗t =(σ̄tσ̄t
tr)−1σ̄t

(Nt

α
(λ̄t + φ̄t − δ̄t) + δ̄tX

π∗
t

)
(75)

=Nt

(
λ(Yt) + φ1

t − δ1
t

)
σ(Yt)α

+Xπ∗
t

δ1
t

σ(Yt)
, t ≥ 0.

Remark 7. We observe that - as suggested by Corollary 4.2.2 - the optimal strategy
only depends on the first component of the volatility vectors of the market view and
benchmark process respectively; the unhedgeable source of risk from the stochastic factor
is ignored.

Remark 8. Let us assume that the numeraire is given by the risk-free asset, i.e. δ =
0, N = 1. Then, for the volatility process (φt)t≥0 of the market view process (Zt)t≥0 there
is - besides some minor integrability and adaptedness requirements - great flexibility for
the agent to choose this process according to her beliefs and/or preferences. An open
question is how the agent chooses this process. One approach to answer this question
would be to work empirically, to look at a past trading period and an investor’s investment
decisions within this period. One can then try to derive an agent’s implicitly chosen
market view process, assuming that her decisions were indeed optimal. An investigation
in this direction or another account for the interpretation of the market view process (or
equivalently for its volatility process (φ)t≥0, which uniquely determines the market view
process) is left to future research.

Remark 9. We try to recover the optimal strategies of the classical approach by specific
choices of the market view process. We observe that in the classical framework, the
optimal strategy is given by the myopic portfolio plus a correction term (cf. (65), (67)) -
which is often referred to as excess hedging demand - and which depends on the volatility
process b(·) of the stochastic factor. Hence, the forward approach can only replicate
the classical strategy if we incorporate the volatility process of the stochastic factor
into the volatility of the forward performance process, and thereby introduce an implicit
dependence of the forward performance process on the stochastic factor. Otherwise, the
unhedgeable risk from the stochastic factor would be ignored, as noted by Remark 7.

We note following special cases for the choice of the market view process, where we
again assume δt = 0:

1. φ1
t = 0: In case (the first component of) the volatility process is chosen to be 0, we

get from the dynamics (46) of the forward performance process that the volatility
process corresponding to the correlated Brownian term (the first component) is zero
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and we end up with only the myopic portfolio for each of the 3 performance criteria.
Thus, any excess hedging demand disappears for forward utility processes with zero
volatility (at least in the first component), so in particular for time-monotone ones.

2. φ1
t = ρ

(1−qρ2)
b(Yt)

fy(At,Yt)
f(At,Yt)

, for f as in (65), then with power utility initial condition

we recover the same strategy as in the classical approach (65).

3. φ1
t = ρ

ρ̄2
b(Yt)

hy(At,Yt)
h(At,Yt)

, where h is given by (67). Analogue to the previous case,
we recover the optimal strategy from the classical approach for the exponential
performance process.

4. φ1
t = −λ(Yt): This choice leads to π∗t = 0, i.e. the agent puts all of her wealth in

the risk-free asset, which holds for all 3 forward utility processes.

Example 3: Black Scholes model with drift uncertainty
We observed in the previous two examples that the forward investment strategies stay
the same as long as the wealth dynamics do not change and the market coefficients are
adapted to the filtration which the investor observes. For example, in the Black-Scholes
model it is assumed that the investor can observe the Brownian motion W and hence
has full information about the (constant) drift µ of the asset. However, a more realistic
assumption is that the agent only observes the price process S, and so the market price of
risk λ is unknown. In this example we give a short overview of how one can deal with this
situation and by means of filtering theory recover a full-information setup, which then
allows us to apply the results from the previous sections. A comprehensive discussion of
filtering in the light of partial information models and a detailed derivation of the model
used in this section can be found in Monoyios [37].

We consider the case of a Black-Scholes market model, but with the market price of
risk being an unknown constant. We assume it to be an F0-measurable random variable
with a Gaussian distribution (λ ∼ N(λ0, v0)). We can infer the value of the volatility σ
from the quadratic variation of the observation process: σ2

t = 1
S2
t t
〈S〉t , 0 ≤ t ≤ T . We

call the filtration generated by the stock price process F̂ := (σ(Su : 0 ≤ u ≤ t))0≤t≤T the
observation filtration. Now the idea is to define an F̂-adapted process (λ̂t)0≤t≤T which
describes our best estimate of the market price of risk given the current information. This
is a classical filtering problem, and a widely used approach to get the best estimate for λ
is given by the Kalman-Bucy filter [7], which says that the optimal filter λ̂t := E[λ|F̂t] is
given by

λ̂t =λ0 +

∫ t

0
vsdB̂s, 0 ≤ t ≤ T, (76)

where B̂ is a F̂-standard Brownian motion and vt is the conditional variance which satisfies

dvt = −v2
t dt, v0 = v0, (77)

i.e. vt =
v0

1 + v0t
, 0 ≤ t ≤ T. (78)

We observe that λ̂ is a Gaussian process adapted to F̂. After filtering, we essentially end
up with a full information model, where the stock price and wealth process respectively
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have dynamics

dSt = σSt(λ̂tdt+ dB̂t) (79)

dXπ
t = σπt(λ̂tdt+ dB̂t), Xπ

0 = x. (80)

Note that our investment strategy must be adapted to the observation filtration, hence
(πt)0≤t≤T is an F̂-adapted process.

Classical approach We consider a Merton-type problem with the above-mentioned
model, hence we fix a time horizon T and a utility function U for the terminal time. In
order to solve the optimal investment problem with the Gaussian drift process, we use
duality theory, in particular Theorem 4.3. For a good introduction to duality theory for
optimal investment problems we refer the reader to Karatzas et al. [28], or the textbook
treatments by Karatzas and Shreve [29], Chapter 6.5, and Pham [50], Chapter 7.

Let the primal problem be defined by

u(x) := sup
π∈A

E[U(Xπ
T )|F̂0] (81)

s.t. E[ZQ
TXT |F̂0] = x, (82)

where ZQ
t = E(−λ̂ · B̂)t is the Radon-Nikodym derivative of the (unique) martingale

measure Q with respect to P on F̂t. Denote by Ũ the convex conjugate and by I the
marginal inverse of the utility function U , which are defined by

Ũ(η) := sup
x∈R+

{U(x)− xη}, (83)

I(η) := U ′(η)−1. (84)

Then the dual value function ũ is defined by

ũ(η) := E[Ũ(ηZT )|F̂0]. (85)

Theorem 4.3. (Monoyios [37], Theorem 6) Let the primal and dual value function be
given by (81) and (85) respectively.

1. Then u and ũ are conjugate, i.e.

u(x) = inf
η∈R+

{ũ(η) + xη}, ũ(η) = sup
x∈R+

{u(x)− xη}, (86)

which implies that u′(x) = η and ũ′(η) = −x.
2. The optimal terminal wealth of the primal problem (81) is given by

X∗T = I(ηZT ). (87)

Proof. We refer to Monoyios [37], Theorem 6.

Returning to our original optimal investment problem, we proceed in 3 steps to com-
pute the optimal strategy (π∗t )0≤t≤T : First, we find the dual value function using (85)
and apply Theorem 4.3 to obtain the primal value function. Then, we invoke the second
part of Theorem 4.3 to deduce the optimal terminal wealth and impose the martingale
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condition to obtain the corresponding wealth process (X∗t )0≤t≤T . In the last step, we
compute the dynamics of the optimal wealth process and compare with (80) to find the
corresponding optimal strategy.

We carry out these steps for our 3 standard examples of utility functions and get
following results. A detailed derivation of the power utility case can be found in Monoyios
[37], Theorem 9, and of the exponential utility case in Björk et al. [6], Proposition 3.8.

1. Power utility: π∗t =
λ̂t
σ

Xπ∗
t

(1− p)

( 1

1 + qvt(T − t)

)
, 0 ≤ t ≤ T. (88)

2. Logarithmic utility: π∗t =
λ̂t
σ
Xπ∗
t , 0 ≤ t ≤ T. (89)

3. Exponential utility: π∗t =
λ̂t
σα
− σ

(E)
t

2σα
, 0 ≤ t ≤ T, (90)

where σ
(E)
t is the variance of the process Et := E[

∫ T
t ‖λs‖

2ds|F̂t].

Forward utility approach After filtering, we again obtain a full-information model
where the wealth dynamics are given by (80). We observe that we are essentially in the
same situation as in Example 1, with the only difference being that the constant λ is
replaced by the Gaussian process (λ̂t)t≥0 and we change the filtration F → F̂. Hence,
we can refer to the previously obtained results, but with λ → λ̂t, and deduce that the
optimal strategies are given by

1. Power forward utility: π∗t =
Xπ∗
t

(1− p)

(
λ̂t + φt − δt

)
σ

+Xπ∗
t

δt
σ
, t ≥ 0, (91)

2. Logarithmic forward utility: π∗t =Xπ∗
t

(
λ̂t + φt

)
σ

, t ≥ 0, (92)

3. Exponential forward utility: π∗t =Nt

(
λ̂t + φt − δt

)
σα

+Xπ∗
t

δt
σ
, t ≥ 0. (93)

Remark 10. Comparing the optimal strategies of the classical and the forward frame-
work, we observe that for the case of a power utility criterion the forward framework
cannot recover the optimal strategy from the classical framework without introducing
the time horizon T . In the classical approach, in the limit t → T the optimal portfolio
converges to the myopic strategy (since vt is bounded). For t < T , we note that for v0 ≥ 0
also vt > 0 for all 0 ≤ t ≤ T and hence

κt :=
( 1

1 + qvt(T − t)

)
=

{
> 1 for p ∈ (0, 1),

< 1 for p ∈ (−∞, 0).
(94)

Thus, the classical Merton strategy is adapted by reducing (p < 0) or increasing (p > 0)
the amount invested in the risky asset by the factor κt. The more risk-averse the agent
is, the smaller the correction factor, and hence the more the position in the risky asset is
reduced.

On the contrary, a time-monotone forward performance criterion would yield an opti-
mal strategy that ignores the parameter uncertainty and just uses the best estimate of the
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market price of risk for the optimal strategy. Of course, for a non-zero volatility forward
performance process the agent could specify the market view process to get a correction
term for the position in the risky asset. However, due to the lack of understanding of how
the agent chooses this process (see Remark 9), it is unclear if the agent would update her
market view process in the case when the assumption on the underlying market model
changes (i.e. from known parameters to a model with estimated parameters which in-
cludes uncertainty). Since we have established (cf. Corollary 4.2.2) that unhedgeable risk
factors are ignored, we conjecture that the agent only changes her market view process
if the market environment itself changes, which would imply that the only thing that
changes in the optimal strategy is a replacement of the constant market price of risk by
the best estimate based on the Kalman-Bucy filter. This however would mean that risks
coming from parameter uncertainty remain unaddressed. Future research on the market
view process could investigate this hypothesis.

For the exponential utility, the standard strategy is adapted by reducing the amount
of money in the stock. We observe that the higher the volatility of the risk-neutral
conditional expectation of the mean-variance tradeoff process E, the more we reduce our
position in the risky asset in the classical case. We can recover this strategy in the forward

approach by choosing the market view volatility process as φt = −1
2σ

(E)
t and δt = 0.

5 Optimal strategies for investment and consumption

So far we have only considered situations where the agent obtains utility only from ter-
minal wealth. However, in a more realistic approach we should take into account that
the agent can also use parts of her wealth to consume throughout the investment period
and will derive utility from this consumption10. The consumption, of course, reduces the
wealth of the agent. Hence if we take again our general Itô-process market model (cf.
Section 2) the dynamics of the (controlled) wealth process of the agent are now given by

dXπ,c
t =πtσt(λtdt+ dWt)− ctdt Xπ,c

0 = x. (95)

We observe that the investor can now control 2 processes, namely the amount of
wealth in the risky asset (πt)0≤t≤T as well as the F-adapted, non-negative consumption

process (ct)0≤t≤T satisfying
∫ T

0 ctdt < ∞, almost surely. The admissible set contains all
pairs c, π such that the same assumptions for an admissible π as outlined below equation
(10) hold, and in addition (ct)0≤t≤T from above is such that 0 ≤ ct ≤ Xt for all 0 ≤ t ≤ T .

We will first review how this problem is handled in the classical framework, and then
show how these ideas informed Berrier & Tehranchi [5] to define a forward performance
criterion for investment and consumption.

10In his seminal papers, from which the classical theory of optimising investment by maximising ex-
pected utility originated [33, 34], Merton in fact already included consumption in the problem.
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5.1 Classical approach

We fix a time horizon T ∈ (0,∞) as well as an impatience factor δ11. Then the objective
is to maximise expected utility from consumption and from terminal wealth over the set
of admissible investment strategies and consumption paths

E[

∫ T

0
e−δtU (1)(ct)dt+ U (2)(Xπ,c

T )]→ max!, (96)

where U (1), U (2) are both a priori fixed utility functions. Clearly, how much the agent
can consume depends on her level of wealth, hence the value function will be a function
of wealth and time. It is given by

u(x, t) = sup
π,c∈A

E[

∫ T

t
e−δsU (1)(cs)ds+ U (2)(Xπ,c

T )|Xπ,c
t = x]. (97)

Standard stochastic control theory (see, e.g., Chapter 3.3 in Pham [50]) shows that the
process

ζπ,ct =

∫ t

0
e−δsU (1)(cs)ds+ u(Xπ,c

t , t), 0 ≤ t ≤ T, (98)

is a supermartingale for all (π, c) ∈ A and a martingale for the optimal controls π∗, c∗.
Applying first order conditions to the HJB (see, e.g., Chapter 1.2 in Rogers [53] or the
proof of Theorem 1 in Merton [34]12) shows that the optimal controls are given by

π∗t = −(σtσ
tr
t )−1σt

(ux(X∗t , t)λt
uxx(X∗t , t)

)
, 0 ≤ t ≤ T, (99)

c∗t = I(1)
(
eδtux(X∗t , t)

)
, 0 ≤ t ≤ T, (100)

where X∗ = Xπ∗,c∗ and I(1) denotes the marginal inverse of the consumption utility
function U (1).

If there is no prespecified time horizon, then we only choose a utility function of
consumption U (1) and a discount factor δ and aim to maximise the expected utility from
consumption from now up to an infinite time horizon. Therefore, the objective is

E[

∫ ∞
0

e−δtU (1)(ct)dt]→ max! (101)

Problem (101) is called the infinite horizon problem. While in the finite horizon prob-
lem the value function was assumed to be a function of wealth and time, in an infinite
horizon problem the lack of a termination time implies that the value function is not
time-dependent, as was already noted by Merton [33] when first introducing this prob-
lem. Intuitively speaking, the agent is faced with the same problem if she has a wealth of

11The impatience factor takes into account that a typical agent would rather consume the same amount
today than at any future point in time. Hence, δ serves as a discount coefficient which determines how
much less utility an agent derives from future compared to immediate consumption.

12Merton’s value function also depends on the current asset price, which we don’t assume, since it is
incorporated in the wealth process. Hence setting the P -derivative to 0 in (27) in [34] gives the same
result as we have here.
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x at time t1 as if she had the same wealth at some time t2 > t1. Since for both points in
time the time to maturity is infinite, the agent will adopt the same strategy for a certain
level of wealth, regardless at what point in time she hits that level. Therefore, the value
function is given by

J(x) = sup
π,c∈A

E[

∫ ∞
0

e−δtU (1)(ct)dt], (102)

where without loss of generality we set the current time to zero. The same arguments as
in the finite horizon case assert that the process ζ defined in (98) with u(Xπ,c

t , t) replaced
by J(Xπ,c

t ) is a supermartingale for all π, c ∈ A and a martingale for the optimal π∗, c∗,
which have the feedback form

π∗t = −(σtσ
tr
t )−1σt

(J ′(X∗t )λt
J ′′(X∗t )

)
, t ≥ 0, (103)

c∗t = I(1)
(
eδtJ ′(X∗t )

)
, t ≥ 0. (104)

5.2 Forward utility approach

The optimal investment problem with consumption has rarely been studied so far in the
forward utility framework. The first authors who considered this problem were Berrier
and Tehranchi [5]. Their approach was to follow the same idea that informed Musiela
& Zariphopoulou [43, 44] in their definition of forward utilities in an optimal investment
setting, which was to mimic the martingale and supermartingale property of the value
function in the classical framework. Hence, they defined a forward performance criterion
in this setting as follows:

Definition 3. A forward performance process for investment and consumption is a pair
of F-adapted processes UX(·, ·), UC(·, ·) such that

i) x 7→ UX(x, ·), c 7→ UC(c, ·) are increasing and strictly concave,

ii) Let ξπ,ct :=
∫ t

0 U
C(cs, s)ds+ UX(Xπ,c

t , t), t ≥ 0,
For each π, c ∈ A, E[|ξπ,ct |] <∞, t ≥ 0 and ξπ,c is a supermartingale, i.e.

E[ξπ,ct |Fs] ≤ ξπ,cs , 0 ≤ s ≤ t,

iii) ξ is a martingale for some π∗, c∗ ∈ A, i.e.

E[ξ∗t |Fs] = ξ∗s , 0 ≤ s ≤ t.

Remark 11. Note that for the choice UC = 0 the above definition is equivalent to the one
in the investment-only case (cf. Definition 1), which affirms the consistency of Definition
3. We also note that we could add initial conditions to the definition, which would be
imposed on UX since ξπ,c0 (·) = UX(·, 0).

Berrier and Tehranchi give a dual characterisation for a forward utility pair, and under
the additional assumption of UX being monotone in the time argument (and thus of finite
variation, which implies it is in the class of zero-volatility performance processes) they
derive an SPDE satisfied by the forward performance pair. Under the assumption that
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UX has an Itô decomposition and is such that the Itô-Ventzell formula can be applied,
Källblad [25] and El Karoui et al. [13] (whereby the latter provide the more rigorous
treatment) independently derive an SPDE which must be satisfied by the pair (UX , UC).
It links the drift of UX to the volatility process, and also to the consumption performance
process UC through its convex conjugate Ũ (c). The result is stated in following Theorem.

Theorem 5.1. Let (UX , UC) be a forward utility pair such that UX has the Itô decom-
position dUX(x, t) = b(x, t)dt+ v(x, t) · dWt, which is such that the Itô-Ventzell formula
can be applied (cf. Chapter 3 in Kunita [30]). Then the pair (UX , UC) satisfies the SPDE

dUX(x, t) =
(1

2

‖UXx (x, t)λt + σtrt σt(σ
tr
t σt)

−1vx(x, t)‖2

UXxx(x, t)
− Ũ (c)

(
Ux(x, t), t

))
dt

+ v(x, t) · dWt. (105)

Proof. A detailed proof can be found in [13], Proposition 3.3 b), and a heuristic derivation
is given in [25]. Essentially, one needs to apply the Itô-Ventzell formula to the process
UX(Xπ,c

t , t) to get the dynamics of (ξπ,ct )t≥0 and impose the martingale condition to
obtain a representation for the drift term of UX .

As was already noted by Källblad [25], for UC = 0 the SPDE takes the form of
the SPDE (14) satisfied by a forward performance process as derived by Musiela & Za-
riphopoulou [46] in the situation of just considering utility from wealth and no consump-
tion. This shows that the definition of investment and consumption performance processes
contains investment-only problems as a special case and thereby provides a more general
framework which is consistent with previous developments. Källblad also noted that the
SPDE (105) for a given initial condition and a given consumption performance process UC

has no unique solution due to the flexibility in the choice of the volatility process v(·, ·).
Therefore, she imposes the additional constraint on UX to be monotone in the time argu-
ment, which leads to v(x, t) = 0. For these kinds of zero-volatility processes she provides
a characterisation in terms of (random) auxiliary functions. Zero-volatility forward per-
formance processes that allow an Itô decomposition are also studied by Chong & Liang
[10], who use results from infinite horizon BSDEs, coupled with a process defined through
an ODE, to characterise CRRA-type forward utilities. However, they assume throughout
their paper that the consumption utility process is static, i.e. UC(c, t) = UC(c, 0) = cp

p ,
which severely limits the flexibility of their forward performance functions. In addition
to a rigorous derivation of the SPDE (105) El Karoui et al. [13] also provide conditions
for the existence and uniqueness of a solution to (105) and show that forward utility pairs
of power form are separable in time and wealth.

5.3 Itô-type forward utility pair and corresponding optimal strategies

We use the result from Theorem 5.1 to - analogously to the investment-only case - define
the class of Itô-type forward performance processes of investment and consumption. By
Theorem 5.1 this class encompasses all forward performance pairs for which UX has an Itô
decomposition, which will again allow us to formulate general results. This new definition
will also be useful for future research in this area to postulate results in a very general
form.
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Definition 4. We call a pair of functions UX(·, ·), UC(·, ·) : R× [0,∞)→ R an Itô-type
forward utility pair, if

a) (UX , UC) is a forward performance pair of investment and consumption, i.e. satis-
fies Definition 3,

b) UX ∈ C3,0(R× R+),

c) UX has the Itô decomposition

dUX(x, t) = b(x, t)dt+ v(x, t) · dWt, (106)

where v(·, ·) ∈ C2,0(Rm) and is F-adapted, and b(·, ·) is given by

b(x, t) =
1

2

‖UXx (x, t)λt + σtrt σt(σ
tr
t σt)

−1vx(x, t)‖2

UXxx(x, t)
− Ũ (c)

(
Ux(x, t), t

)
, (107)

d) UX and its local characteristics satisfy the conditions outlined in Appendix A.1, so
that the Itô-Ventzell formula can be applied to the process UX(Xπ,c

t , t), t ≥ 0, for
any admissible wealth process Xπ,c.

Theorem 5.2. Let (UX , UC) be an Itô-type forward utility pair as in Definition 4. Then
the optimal controls are given by

π∗t = (σtσ
tr
t )−1σt

(
RX(X∗t , t)λt −

1

UXxx(X∗t , t)
vx(X∗t , t)

)
, t ≥ 0, (108)

c∗t = IC
(
UXx (X∗t , t)

)
, t ≥ 0, (109)

where RX(·, ·) is the risk tolerance function of UX as defined in (12).

Proof. The result appears as part of the proof of Theorem 5.1 by applying first order
conditions to the drift process of ξπ,ct . It can be found in [13], cf. Equation 3.12 and
the reasoning in the proof of Proposition 3.3 b) therein, and also appears in the heuristic
derivation of [25], Equation (7).

Remark 12. We observe that the optimal investment strategy for an Itô-type forward
utility pair has the same structural form as in the case without consumption (cf. Equa-
tion (33)). Thus, for UC = 0, which implies that IC = 0, we recover the same result as
in Section 4, Theorem 4.2. The optimal consumption policy has the same form as in the
classical approach by depending on the sensitivity of the (wealth) forward performance
process UX with respect to the wealth argument and the marginal inverse of the con-
sumption utility, but without the impatience factor, since it is implicitly incorporated in
the time-dependent process UC .

As in the previous section, we now aim to find an explicit example for such a forward
utility pair and compare its optimal policies with their classical counterparts. Since
a characterisation for a general class of forward utility pairs which allow for explicit
solutions has not been established yet (see Remark 14), we derive an explicit example
for a power-type forward utility pair of investment and consumption, motivated by the
observation from El Karoui et al. (cf. Proposition 4.5 in [13]) as well as the class of
performance criteria consisting of a differential and stochastic inputs (cf. Theorem 4.1).
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Lemma 3 (Power forward utility pair of investment and consumption). Let N,Z be the
stochastic processes given by (15) and (16) respectively. Then a forward utility pair of
investment and consumption is given by

UX(x, t) =
1

p

( x
Nt

)p
ef(t)Zt, t ≥ 0, (110)

UC(x, t) =
1

p

( c
Nt

)p
Kef(t)Zt, t ≥ 0, (111)

where K 6= 0 is a constant and f(·) is given by

f(t) =

∫ t

0

(1

2
q‖λs + φs − pδs‖2 + (p− 1)K1−q + pδtrs

(
λs + φs −

1

2
(p+ 1)δs

))
ds, t ≥ 0.

Proof. The proof is given in Appendix A.3.

Observe that for the forward performance ξπ,ct (Xπ,c
t ) =

∫ t
0 U

C(cs, s)ds + UX(Xπ,c
t , t)

it holds that ξπ,c0 (x) = xp

p , so a power utility initial condition is satisfied.

Corollary 5.2.1. The optimal strategies for the forward performance pair defined in
Lemma 3 are given by

π∗t = (σtσ
tr
t )−1σt

( X∗t
(1− p)

(λt + φt − δt) + δtX
∗
t

)
, t ≥ 0, (112)

c∗t = X∗tK
1−q, t ≥ 0. (113)

Proof. The statement follows immediately from Theorem 5.2 and the explicit expressions
for the forward utility pair (110) and (111) from Lemma 3. The computations are given
in Appendix A.3.

Remark 13. We note that the optimal consumption path is given by a constant fraction
of the wealth process. Since the investor can freely choose K, she can also achieve
any desired fraction of wealth for her optimal consumption strategy. However, once the
parameter K is fixed, it cannot be updated. In other words, the agent consumes the same
fraction of wealth throughout the whole investment period. The choice of K is restricted
by the admissibility criteria. We observe that the consumption path is admissible in the
case that K ∈ [0, 1]. Similar to the reasoning in the previous section with regard to the
choice of the volatility process, a more detailed research would be needed to investigate
how the parameter K is determined. Moreover, the question whether one can relax the
assumption of K being a constant remains open and is left to future research. However,
since the forward utility pair in Lemma 3 is only a specific example of a power-type
forward performance process, it would be sensible to first derive a more general class of
forward performance processes of investment and consumption, and then investigate this
class in more detail. This brings us to our next remark.

Remark 14. Due to the scarce literature on forward utilities of investment and con-
sumption, a general class which allows for explicit solutions - analogous to the class
characterised in Theorem 4.1 for the pure investment case - has not been established
yet. First attempts for characterisations of specific classes of forward performance cri-
teria of investment and consumption can be found in Section 4.2 of Källblad [25], who
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gives a characterisation of zero-volatility forward utility pairs. The characterisation in-
volves auxiliary (random) functions, which makes the comparison and interpretation of
the resulting optimal strategies cumbersome. We propose that, based on the observation
that the choice UC = 0 gives a performance process UX that should satisfy Definition
1 in Section 3, a natural approach to derive a more general class would be to consider
a member the class from the investment only case characterised by Theorem 4.1 for the
process UX , and then try to derive conditions on the consumption performance process
UC such that the pair satisfies Definition 3. To limit the scope of this thesis, this is left
for future research.

5.4 Example and comparison of classical versus forward optimal strat-
egy

We take a standard Black-Scholes model (d = m = 1) with constant model parameters
λ, σ and investigate the optimal strategies with power-type utility processes, i.e. we take
U (1)(a) = U (2)(a) = ap

p , p < 1, p 6= 0, and for the forward utility pair we take the pair
defined in Lemma 3. We get that the optimal strategies for the classical and the forward
framework respectively are given by

• Classical framework finite horizon (Karatzas et al. [27], Example 7.513),

π∗t =
λ

σ

X∗t
(1− p)

, 0 ≤ t ≤ T, (114)

c∗t = X∗t

( p− 1

(1
2qλ

2 + δ)

(
e−(1−q)( 1

2
qλ2+δ)(T−t) − 1

))−1
, 0 ≤ t ≤ T. (115)

• Classical framework infinite horizon (Merton [33] equations (42),(43)):

π∗t =
λ

σ

X∗t
(1− p)

, t ≥ 0, (116)

c∗t = X∗t

(
1
2qλ

2 + δ
)

(1− p)
, t ≥ 0. (117)

• Forward utility framework:

π∗t =
X∗t

(1− p)
(λ+ φt − δt)

σ
+
δt
σ
X∗t , t ≥ 0, (118)

c∗t = X∗tK
1−q, t ≥ 0. (119)

Remark 15. We observe that with regard to the optimal investment strategy, the optimal
fraction of wealth invested in the risky asset is the same as in the case with no consumption
(cf. Example 1 in Section 4). Hence, as in the previous section, we can replicate the
classical framework by choosing Z = N = 1, so a zero-volatility forward utility pair.

13Note that since we have no utility from terminal wealth, the extra term +ek(T−t) of the function p(t)
for k 6= 0 in the formula of the optimal consumption path in the reference [27] disappears in our case, in
order that our terminal condition V (T, x) = 0 is satisfied.
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Further, we remark that for the choice14

K =
( 1

2qλ
2 + δ

1− p

)1−p
(120)

we get the same optimal consumption policy as in the classical framework (in the infinite
horizon case). In the finite horizon case though, due to its horizon-dependence, the clas-
sical optimal consumption path cannot be replicated with the forward utility approach.

6 Indifference pricing with classical versus forward utility

In this section we consider a scenario where the agent is faced with a random payoff at
some fixed future time T and aims to find the optimal investment strategy for this period
(for simplicity we assume no consumption). An example of such a random endowment
would be a long or a short position in a European option with a given maturity. Thus,
for these kinds of problems there is a natural time horizon inherent to the problem.
As was noted by Hugonnier and Kramkov [20], in the case of complete markets, when
perfect replication of the random endowment is possible, the problem is equivalent to
a standard investment problem, but with adjusted initial capital. Hence, we choose to
study an incomplete market, so we take our general market model introduced in Section
2 and assume m > d. Following the modelling approach suggested by Karatzas et al.
[28] (cf. Section 7 therein), we introduce m − d fictitious assets, given by the vector
Y = (Y (1), Y (2), ..., Y (m−d)) with dynamics given by

dYt =diagm−d(Yt)at(btdt+ dWt), Y0 = y, (121)

where (at)t≥0 ∈ R(m−d)×m, (bt)t≥0 ∈ Rm are F-adapted processes which moreover satisfy∫ T
0 ‖bt‖+ ‖at‖2dt <∞, for all T > 0. W is the same m-dimensional Brownian motion as

in (9). The augmented market (S, Y ) then forms a complete market, however the assets
Y are non-traded and thus cannot be used for hedging.

Since the market of traded assets is incomplete, the class of EMMs and the corre-
sponding class of density processes are not a singleton, but are given by

M := {Q :
dQ
dP
|t = E(−(λ+ ν) ·W )t, s.t. νt ∈ Ft,

∫ t

0
‖vs‖2ds <∞, σtνt = 0, t ≥ 0}

Z := {dQ
dP

: Q ∈M}. (122)

As a consequence, there is no unique price for the claim, since we would first need to pick
a measure Q ∈ M in order to be able to apply standard pricing techniques. One way
to overcome this issue was introduced by Hodges and Neuberger [19], and this concept
called indifference pricing was subsequently extended by various authors; for a good
overview we refer the reader to Chapter 2 in the book by Carmona [8]. We will now
quickly introduce the general idea of indifference pricing. The first step (after fixing the
model, of course) is to fix a utility function, where typically one uses an exponential type

14Where in this case δ is the impatience factor from the classical approach and not the volatility process
of Z, which is given by δt = 0.
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utility. Secondly, the objective is defined as maximising terminal utility of wealth and
the random endowment, and the corresponding value function or performance process is
computed. Then, one defines the utility indifference price as the price per claim such that
the agent is indifferent between paying/receiving the price to enter the position with the
random endowment or not entering the position. This gives an equation which implicitly
defines the indifference price and can - in some models - be solved explicitly.

Herein, we consider the random endowment to be a European-type claim h(ST , YT )
with maturity T , for a payoff function h(·, ·), which is such that the exponential moment
condition (here we follow among others Monoyios [38] and Becherer [3])

E[exp
(
(α+ ε)nh(ST , YT )

)
] <∞, for some ε > 0, (123)

is satisfied for all fixed n ∈ Z. An example for such a claim would be a volatility derivative
in a stochastic factor model (then h is only a function of Y ); or one could also think of
a case where the assets Y might be traded, but perfect hedging is impracticable and one
wants to restrict trading only to a smaller amount of assets. Such a situation could arise,
for example, when h is a basket option on a large amount of assets.

A particularly useful tool to tackle the problem of optimal investment including a
position of n units (n > 0 is a long and n < 0 a short position) in the European claim
maturing at T is given by duality theory. The dual representation for the classical case has
been established by Delbaen et al. [12], a nice treatment of duality methods in incomplete
markets is given by Karatzas et al. [28]. The forward case has been studied in Leung et
al. [31], but only in a 2-dimensional model with bounded coefficients. The main result
obtained herein (Theorem 6.2) gives the indifference price of n claims in a European-
type option in a general Itô-process market under a time-monotone, exponential forward
performance criterion.

As before, we will first give a quick overview over the approach and main results from
the traditional framework, and will then look at the forward framework and derive the
results in this model.

6.1 Classical approach

As noted above, duality methods play an important role in the classical indifference
pricing framework. Hence we start by introducing the primal and dual value function
process, which are defined by

Primal : u(n)(Xπ
t , Yt, t) = ess sup

π∈A
E[U

(
XT + nh(YT , ST )

)
|Ft] (124)

Dual : v(n)(s, Yt, t) = ess inf
Z∈Z

E[Ũ(s
ZT
Zt

) + s
ZT
Zt
nh(YT , ST )|Ft]. (125)

Definition 5. The indifference price p(n)(t, x, y) is defined as the solution to the equation

u(n)(t, x− np(n)(x, y, t), y) =u(0)(t, x), 0 ≤ t ≤ T. (126)

Intuitively speaking, the indifference price is defined as the price such that the agent
is indifferent between selling/buying n units of the claim for this price or not entering
this position at all. Classically, one chooses exponential preferences for the agent as one
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can factor out wealth, which implies that exponential preferences yield prices which are
independent of wealth and thus allow for tractable solutions, as it turns out.

Following theorem gives the per-claim exponential utility indifference price for n
units of the European claim h(YT , ST ). It generalises Theorem 4.5 and Lemma 4.8 from
Monoyios [38], who shows these results for n = −1.

Theorem 6.1. For the choice of an exponential utility function U(x) = − exp(−αx) for
some α > 0, the primal value function and the indifference price per claim for a position
of n units in the claim h(YT , ST ) are given for 0 ≤ t ≤ T by

u(n)(x, y, t) = − exp
(
− αx− ess inf

Q∈M
{Ht(Q|P) + nαEQ[h(YT , ST )|Ft]

)
, (127)

p(n)(x, y, t) =

{
ess infQ∈M{EQ[h(YT , ST )|Ft] + 1

nαHt(Q|Q
E)}, n ≥ 0,

ess supQ∈M{EQ[h(YT , ST )Ft]− 1
|n|αHt(Q|Q

E)}, n ≤ 0,
(128)

where Ht(Q|P) := EQ[log
( ZQ

T
ZtQ
)
|Ft] is the conditional relative entropy between Q and P

and QE denotes the minimiser over all martingale measure Q ∈ M of Ht(Q|P), and is
called the minimal entropy measure15.

Proof. The proof is given in Appendix A.4. A slightly different proof for a similar state-
ment is given in Monoyios [38], who considers the case n = −1 in his Theorem 4.5.

Corollary 6.1.1. The so-called marginal utility-based price (MUBP) is given for the
limit n→ 0 and represents the price for an infinitesimal small position in the claim. We
observe that

p̂t = lim
n→0

p(n)(x, y, t) = EQE [h(YT )|Ft], 0 ≤ t ≤ T, (129)

so the MUBP for the classical framework is given by the expectation of the payoff under
the minimal entropy measure. This is a well-known result, see for example Monoyios [36]
Theorem 5.

6.2 Forward utility approach

In the forward utility framework, the performance process is given by

V (n)(Xπ
t , Yt, t) = ess sup

π∈A
E[UT (Xπ

T + nh(YT , ST ))|Ft], (130)

for some forward performance criterion (Ut(·))t≥0. We will focus on time-monotone crite-
ria in order to get explicit solutions. The use of non-zero volatility forward performance
processes in this problem has not been studied yet and will be left for future research.
Again, we impose the initial condition of an exponential utility function so that we can
compare the results with the classical framework. The utility process is thus given by
Ut(x) = − exp

(
−αx− 1

2At
)
, t ≥ 0 (cf. Lemma 1). Hence the performance criterion reads

V (n)(x, y, t) = ess sup
π∈A

E[−e−α
(
Xπ
T+nh(YT ,ST )

)
+ 1

2

∫ T
0 λ2sds|Xt = x, Yt = y]. (131)

15Proposition 4.1 of Kabanov and Stricker [22] asserts that the minimiser of the relative entropy (i.e.
for t = 0) also minimises the conditional relative entropy, so we can simply call QE the minimal entropy
measure.
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Theorem 6.2. Under an exponential time-monotone forward performance criterion, the
value function and the per-claim indifference price for a position of n units in the claim
h(YT , ST ) are given by

V (n)(x, y, t) = −e−
1
2
At−αxe−ξt , 0 ≤ t ≤ T, (132)

for ξt = ess inf
Q∈M

{αnEQ[h(YT , ST )|Ft] +
1

2
EQ[

∫ T

t
‖νs‖2ds|Ft]} (133)

p
(n)
F (x, y, t) =

{
ess infQ∈M{EQ[h(YT , ST )|Ft] + 1

nαHt(Q|Q
M )}, n ≥ 0,

ess supQ∈M{EQ[h(YT , ST )|Ft]− 1
|n|αHt(Q|Q

M )}, n ≤ 0.
(134)

Proof. We use the same idea as in the proof of Proposition 7 in Musiela & Zariphopoulou
[46], which is to rewrite the payoff function in a way that we get an objective function
which is of the form of the classical objective from the previous subsection (cf. Equation
(124)). Then we can use the previous results and compute the value function and the
corresponding indifference price.

Let g(YT , ST ) := h(YT , ST )− 1
2αn

∫ T
0 λ2

sds, then we can write

V (n)(x, y, t) = ess sup
π∈A

E[−e−α(Xπ
T+ng(YT ,ST ))|Xt = x, Yt = y] (135)

= ess sup
π∈A

E[U
(
XT + ng(YT , ST )

)
|Xt = x, Yt = y], (136)

where U is the exponential utility function with parameter α. We observe that the value
function now has the same form as in the classical framework (cf. Equation (124)), and
also the dynamics of the underlying processes remain unchanged, thus we can use the
results from Theorem 6.1 and get that the primal value function is given by

V (n)(x, y, t) = − exp
(
− αx− ess inf

Q∈M
{Ht(Q|P) + αnEQ[g(YT )|Ft]}

)
. (137)

Now we recall the definition of the density ZQ and apply the Girsanov theorem to deduce

Ht(Q|P) = EQ[log
(ZQ

T

ZQ
t

)
|Ft] (138)

= EQ[−
∫ T

t
(λs + νs)dWs −

1

2

∫ T

t
‖λs + νs‖2ds|Ft] (139)

= EQ[−
∫ T

t
(λs + νs)dW

Q
s +

1

2

∫ T

t
‖λs + νs‖2ds|Ft]. (140)

We observe that λtrt νt = µtrt
(
(σtσ

tr
t )−1

)tr
σtνt = 0, 0 ≤ t ≤ T, by the definition of λ and

the condition on νt (cf. (122)). Thus ‖λt + νt‖2 = ‖λt‖2 + ‖νt‖2, t ≥ 0. This implies
that (137) reduces to

V (n)(x, y, t) = −e

(
− 1

2
At−αx−ess infQ∈M{αnEQ[h(YT ,ST )|Ft]+ 1

2
EQ[

∫ T
t ‖νs‖

2ds|Ft]}
)
. (141)

To establish the second part of the theorem, we observe that for n = 0 the infimum is
achieved by the choice νt = 0, so that u(0)(x, t) = −e−αx−

1
2
At . Thus we get that the
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indifference price is given by

p
(n)
F (x, y, t) =

{
ess infQ∈M{EQ[h(YT )|Ft] + 1

nα
1
2E

Q[
∫ T
t ‖νs‖

2ds|Ft]}, n ≥ 0,

ess supQ∈M{EQ[h(YT )|Ft]− 1
|n|α

1
2E

Q[
∫ T
t ‖νs‖

2ds|Ft]}, n ≤ 0.
(142)

We use Lemma 4.1 in Monoyios [38], which states that for Q1,Q2 ∈M

dQ1

dQ2
|t =

dQ1
dP |t
dQ2
dP |t

, t ≥ 0, (143)

to compute that dQ
dQM |t = exp

(
−
∫ T
t νsdW

Q
s + 1

2

∫ T
t ‖νs‖

2ds
)
, which in turn shows that

Ht(Q|QM ) = 1
2E

Q[
∫ T
t ‖νs‖

2ds|Ft]. Hence (142) reduces to

p
(n)
F (x, y, t) =

{
ess infQ∈M{EQ[h(YT )|Ft] + 1

nαHt(Q|Q
M )}, n ≥ 0,

ess supQ∈M{EQ[h(YT )|Ft]− 1
|n|αHt(Q|Q

M )}, n ≤ 0.
(144)

Corollary 6.2.1. The MUBP in the forward framework under a time-monotone expo-
nential performance criterion is given by

p̂F ;t = lim
n→0

p(n)(x, y, t) = EQM [h(YT )|Ft], 0 ≤ t ≤ T. (145)

Remark 16. We note following striking difference between the MUBP in the classical
and the forward utility framework. While in the classical framework the MUBP is given
by the expectation of the payoff with respect to the minimal entropy measure (which
depends on the model choice), the MUBP in the forward utility framework is always the
expectation of the payoff with respect to the minimum martingale measure, regardless
of the underlying model. Also for the indifference pricing formula, we get the same
representation of the indifference price for both approaches (compare (241) and (144)),
but while the classical framework takes the relative entropy with respect to the minimal
entropy measure, the forward framework uses the minimal martingale measure instead.

Remark 17. If λt is deterministic, then we have that the minimal entropy measure is
the minimiser of

1

2

∫ T

t
‖λs‖2ds+ EQ[

∫ T

t
‖νs‖2ds|Ft]→ inf

Q∈M
!, (146)

which is minimised by choosing νs = 0. So in this case, QE = QM and the classical and
forward indifference price coincide.

Remark 18. Proposition 7 in Musiela & Zariphopoulou [31] shows a similar result to
Theorem 6.2, but is given only for a long position in an American option in a stochastic
volatility market model, i.e. d = 1,m = 2, with bounded coefficients for the stock price
dynamics. We note that our theorem could easily be extended to American options in
a similar manner than was done in [31] by writing it as a combined optimal control and
optimal stopping problem. However, since we herein consider the problem with a natural
time horizon, we decide to avoid the technical details and only consider European-type
options.
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6.3 Example and comparison of classical versus forward indifference
price

A simple example is the so called basis risk model, where we have one stock and one
non-traded factor (m = 2, d = 1) and random coefficients λt, σt, at, bt. We consider a
claim h(·) written only on the non-traded asset Y .

Lemma 4. In the above-described basis risk model with random coefficients, the per-

unit indifference price p(n)(x, y, t) and p
(n)
F (x, y, t) for n units of the claim h(YT ), in the

classical and in the forward framework respectively, is given by

p(n)(x, y, t) =− γ

nα
log
(
EQE [e

−αn
γ
h(Yt)|Ft]

)
, γ =

1

1− ρ2
, (147)

p
(n)
F (x, y, t) =− γ

nα
log
(
EQM [e

−αn
γ
h(Yt)|Ft]

)
, 0 ≤ t ≤ T, (148)

Proof. In the classical framework, Proposition 5 in Monoyios [35] shows16 that the value
function in the traditional framework is given by

u(n)(x, y, t) = −e−αx
(
f(t, y)

)γ
, γ =

1

1− ρ2
, (149)

f(t, y) = EQM [e
−αn

γ
h(Yt)− 1

2γ

∫ T
t λ2sds|Ft], 0 ≤ t ≤ T, (150)

where ρ is the correlation of the 2 driving Brownian motions. Using this in the indifference
price formula (126) we get that

p(n)(t, x, y) =− γ

nα
log
(EQM [e

−αn
γ
h(YT )− 1

2γ

∫ T
t λ2sds|Ft

EQM [e
− 1

2γ

∫ T
t λ2sds|Ft]

)
. (151)

Corollary 3 in Monoyios [35] shows that

ZQE,QM

T =
dQE

dQM

∣∣∣
FT

=
exp

(
− 1

2(1− ρ2)
∫ T

0 λ2
sds
)

EQM [exp
(
− 1

2(1− ρ2)
∫ T

0 λ2
sds
)
|FT ]

. (152)

By Bayes’ theorem for conditional expectations (Shreve [55], Lemma 5.2.2) we have that
for an FT -measurable random variable C it holds that

EQE [C|Ft] =
1

ZQE,QM

t

EQM [CZQE,QM

T |Ft], 0 ≤ t ≤ T. (153)

Hence we identify the density in the formula above (151) and apply Bayes’ theorem to
obtain

p(n)(t, x, y) =− γ

nα
log
(
EQE [e

−αn
γ
h(YT )|Ft]

)
, 0 ≤ t ≤ T. (154)

For the forward utility framework, we use the same trick as in the proof of Theorem
6.2 and ’absorb’ the time-dependent term of the exponential time-monotone utility by

16In [37] they only consider n = −1. However, their requirement on the claim payoff B ∈ FT is that it
is such that all expectations are well-defined. Thus, if we set −B(·) = nh(·), then the result of Proposition
5 still holds true since by assumption h(·) satisfies the exponential moment conditions.
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defining a new payoff function g(YT ) = h(YT )− 1
nα

1
2

∫ T
t λ2

sds, so that we recover the same
form as in the objective function of the classical approach. The value function and the
indifference price can then be computed to take the form

V (n)(t, x, y) =− e−αx+ 1
2
AtEQM [e

−αn
γ
h(Yt)|Ft], 0 ≤ t ≤ T, (155)

p
(n)
F (t, x, y) =− γ

nα
log
(
EQM [e

−αn
γ
h(Yt)|Ft]

)
, 0 ≤ t ≤ T. (156)

Remark 19. We observe that for (λt)0≤t≤T , such that
∫ T
t λ2

sds is independent of YT for
all 0 ≤ t ≤ T , the indifference price for the two approaches coincide, so in particular
for deterministic λ (in that case also the marginal utility-based prices are the same). In
general though, the two prices are not necessarily the same.

7 Conclusion

In summary, we have reviewed, summarised and unified the existing literature on forward
performance processes. We have generalised existing results on optimal investment poli-
cies by introducing a new and very general class of forward performance processes called
Itô-type forward utilities, which encompasses the most widely used forward utility func-
tions in the literature, as we have shown. We find that the optimal investment strategy
under an Itô-type forward performance criterion is given by the myopic portfolio plus a
correction term, which depends on the derivative of the volatility process of the forward
performance process with respect to the wealth argument. This leads us to conclude
that, in a general incomplete Itô-process model, Itô-type forward utilities whose volatil-
ity process is not wealth-dependent always yield the myopic portfolio, which generalises
a similar observation which has previously been established only for time-monotone (i.e.
zero volatility) forward utilities in a two factor model. Moreover, we find that optimal
investment strategies for Itô-type forward utilities ignore unhedgeable risk factors, as long
as the external stochastic factor is not explicitly introduced into the volatility process of
the forward utility. The consideration of specific market models and an explicit computa-
tion of the strategies therein emphasises these findings and puts the optimal strategies of
the new approach into perspective by comparing them with their classical counterparts.
We find that, except for the cases when the classical strategy depends on the time horizon,
the classical strategies can be replicated by a certain choice of the volatility parameter.
We also show how earlier results for the most widely used utility functions, consisting of
a differential and stochastic inputs, follow as a special case of our general optimal policy
for Itô-type forward utilities in an incomplete Itô-process market.

When adding consumption to the problem, we were able to extend the definition of
Itô-type forward performance processes - using characterisation results from El Karoui
et al. [13] and Källblad [25] - in a way which is consistent with the previous definition.
We observe that the structure of the optimal investment strategy under Itô-type forward
utilities stays the same as in the pure investment problem, and the optimal consumption
path takes a similar form than in the classical approach using the marginal inverse of
the utility of consumption process. The literature on forward performance processes
for investment and consumption problems is scarce, and apart from a zero-volatility
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class represented by auxiliary functions, which has been introduced by Källblad [25], no
class whose members have an explicit representation has been established so far. Thus,
we derive an explicit power-type member of Itô-type forward utilities and compute the
resulting optimal policies in a standard Black-Scholes model. We compare with the
optimal policies from the classical approach and find that a scaling parameter allows
us to replicate the classical infinite horizon Merton strategy. The choice of the scaling
parameter is rather arbitrary though, and allows the agent to achieve any fraction of
wealth as optimal consumption path (with this fraction staying constant over the whole
investment period), which leaves the question how this parameter can be calibrated to
an individual’s preferences an open one, and is left to future research.

Lastly, we establish a formula for the indifference price for a European type claim
under a time-monotone exponential performance criterion in a general incomplete Itô-
type market. We consider a general claim - on the traded and/or non-traded factors
- which satisfies an exponential moment condition. We observe that the formulae for
the classical and forward exponential utility indifference price are essentially the same in
terms of structure, with the striking difference that the classical formula has a penalisation
term which includes the relative entropy with respect to the minimal entropy measure,
while the forward formula penalises using the relative entropy with respect to the minimal
martingale measure. As a consequence, we conclude that the indifference pricing formulae
are the same if the market price of risk process is deterministic. We further conclude that
the marginal utility-based price is the expectation of the payoff of the claim with respect to
the minimal martingale measure (in the forward framework) as opposed to with respect
to the minimal entropy measure (in the classical framework). This generalises similar
results that have previously appeared in the literature for specific model and/or claim
choices.

To conclude, we highlight some opportunities for future research and suggest ap-
proaches to look at these problems. Most notably, we find that while there is extensive
literature on the dual side of classical investment problems (see, e.g., the bibliographic
remarks of Chapter 7 in the book by Pham [50]), it has rarely been considered for the
forward framework (to the best of our knowledge, only Zitkovic [59], Berrier et al. [5]
and to some extent Källblad et al. [26] have considered dual characterisations for forward
utilities). Hence, it could be informative to explore the dual side of forward performance
processes. Since the minimal entropy measure often plays an important role in the char-
acterisations of optimality on the dual side for the classical approach, the observations
made in Section 6 for the exponential utility indifference pricing formulae in combination
with the observation from Section 4 that unhedgeable risk factors are ignored lead us to
conjecture that similar formulae that have been proven for the classical case can also be
established in the forward case, but with the minimal entropy measure being replaced by
the minimal martingale measure (at least for time-monotone forward utilities).

Secondly, we noted that the (derivative of the) volatility process of the forward utility
appears explicitly in the optimal strategy. In particular, for the popular class of forward
performance criteria constructed from a differential and stochastic inputs, the volatility
process of the market view process prescribes the optimal strategy. In spite of that,
there has so far been no investigation that tries to answer the question how this process
is chosen (either explicitly or implicitly by her investment decisions) by the agent. An
understanding of this procedure could provide valuable insights on the optimal investment
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policies and could allow for calibration and consequently actual implementation of forward
performance investment strategies. A potential way to study this problem could be to use
empirical data from an agent’s past investment decisions and calibrate the market view
process to these decisions. This approach would assume that the decisions were indeed
optimal according to such a type of forward performance criterion.

Thirdly, the first basic definitions and characterisations of forward utilities for in-
vestment and consumption can be extended and studied in more detail. Our general
definition of Itô-type forward performance processes can prove useful for obtaining gen-
eral results. A first direction could be to characterise a class of forward utilities which
allow for tractable and explicit representations - analogue to the popular class of forward
utilities constructed from a differential and stochastic inputs in the pure investment case.
This would allow for comparisons of the resulting optimal policies to the classical case
in a similar fashion than we have done in Section 4 of this thesis, which could provide
interesting insights.

Another direction for future research could be to consider variations of the forward
utility functions. For example, one could add a jump process to the dynamics of the
forward utility function, which could capture sudden shocks to an agent’s preferences.
Alternatively, in the same spirit as the recent approach taken by He et al. [17] who use
rank-dependent utilities, one could think about varying the classical preferences and, e.g.,
consider behavioural preferences, which originate in the seminal papers by Kahnemann &
Tversky [23, 24], who use insights of experimental psychology to establish a new theory
on decision making under risk, called prospect theory. A framework for portfolio selection
under preferences which are based on prospect theory has been established by Jin & Zhou
[21]. Investigating the forward side of this framework could be an interesting endeavor.

As one can see, even though there is already extensive literature on the forward utility
framework, there are still manifold opportunities to further investigate and extend this
theory. The unification and in particular the general definitions in this thesis will be
valuable as they provide a common language to formulate general results, and to keep
any future extensions tractable within the existing framework.
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Appendix

A.1 Itô-Ventzell formula

We outline briefly below the technical details for the application of the Itô-Ventzell formula in
our setting. For a comprehensive treatment containing the general definitions and theorems we
refer the reader to the book by Kunita [30].

Let U(·, ·) be a random field with Itô decomposition (cf. 13)

dU(x, t) = b(x, t)dt+ v(x, t) · dWt. (157)

The local characteristics of U(x, t) are given by
(
a(·, ·, ·), b(·, ·)

)
, where a(x, y, t) is the integrand

in the join quadratic variation of U(x, t) and U(y, t), i.e.

〈U(x, ·), U(y, ·)〉t =

∫ t

0

a(x, y, s)ds, (158)

which implies that a(x, y, t) = v(x, t)trv(y, t) in our case. For a twice continuously differentiable
(with respect to x and y) function g(·, ·, ·) : D × D × R+ → R, where D denotes the domain of
x 7→ v(x, t), we define the semi-norms

‖g(t)‖∼1:K := sup
x,y∈K

|g(x, y, t)|
(1 + |x|)(1 + |y|)

+ sup
x,y∈K

|gxy(x, y, t)| (159)

‖g(t)‖∼1+0:K := ‖g(t)‖∼1:K + sup
x,y,x̂,ŷ∈K
x 6=x̂,y 6=ŷ

|gxy(x, y, t)− gxy(x̂, y, t)− gxy(x, ŷ, t) + gxy(x̂, ŷ, t)|, (160)

for some subset K ⊆ D. Similarly, for a continuously differentiable function (with respect to the
spatial argument) f(·, ·) : D× R+ → R we define the semi-norms

‖f(t)‖1:K := sup
x∈K

|f(x, t)|
(1 + |x|)

+ sup
x∈K
|fx(x, t)| (161)

‖f(t)‖1+0:K := ‖f(t)‖1:K + sup
x,x̂∈K
x 6=x̂

|fx(x, t)− fx(x̂, t)|, (162)

for some K ⊆ D.
Assumption 4:
The drift b(·, ·) and volatility process v(·, ·) of U(·, ·) are such that b(·, t), v(·, t) ∈ C1,0, for each
t ≥ 0, and the local characteristics

(
a(·, ·, ·), b(·, ·)

)
of U(·, ·) satisfy∫ T

0

‖a(t)‖∼1+0:Kdt <∞, T ≥ 0, (163)∫ T

0

‖b(t)‖1+0:Kdt <∞, T ≥ 0, (164)

almost surely, for every compact K ⊂ D.

Lemma 5. Let U(·, ·) as in (157) be F-adapted, U(·, ·) ∈ C2,0 and such that assumption 4 holds.
Then for every admissible wealth process X the Itô-Ventzell formula holds

dU(Xt, t) = b(Xt, t)dt+ v(Xt, t) · dWt + Ux(Xt, t)dXt +
1

2
Uxx(Xt, t)d 〈X〉t + vx(Xt, t)

trd 〈X,W 〉t .
(165)

Proof. We refer to the proof of Theorem 3.3.1 in [30].
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A.2 Proof of Lemma 1

Proof. We derive the forward performance processes characterised by Theorem 4.1, which consist
of a differential and stochastic inputs. We impose a power, logarithmic and exponential utility
function respectively as an initial condition, so that we can associate the forward utility process
with a classical value function. We recall the characterisation theorem (Theorem 4.1), which says
that a forward utility function is given by

Ut(x) = u
( x
Nt
, At

)
Zt, t ≥ 0 (166)

U0(x) = U(x), (167)

where u satisfies ut = 1
2
u2
x

uxx
(cf. (18)) and N,Z,A are given by (15)-(17). We first derive the

differential input functions u(·, ·) corresponding to a power, logarithmic and exponential initial
condition (21)-(23).

• Case 1: U(x) = xp

p

We propose the ansatz: u(x, t) = xp

p f(t) + g(t), with f(0) = 1, g(0) = 0.

ux(x, t) = xp−1f(t) (168)

uxx(x, t) = (p− 1)xp−2f(t) (169)

ut(x, t) =
xp

p
f ′(t) + g′(t). (170)

Now using the PDE (18) we get that for every x and t

xp

2(p− 1)
f(t) =

xp

p
f ′(t) + g′(t), (171)

which implies that

f ′(t) =
1

2

p

p− 1
f(t) (172)

g′(t) = 0. (173)

We observe that g(·) is a constant and f(·) is of exponential form. Using the initial conditions
and the notational convention q = p

p−1 we obtain

g(t) = 0 t ≥ 0, (174)

f(t) = exp
(1

2
qt
)
, t ≥ 0. (175)

Hence we get that the differential input for the power forward utility function is given by

u(x, t) =
xp

p
e

1
2 qt, t ≥ 0. (176)

• Case 2: U(x) = log(x)
We propose the ansatz: u(x, t) = log(x)f(t) + g(t), with f(0) = 1, g(0) = 0

ux(x, t) =
1

x
f(t) (177)

uxx(x, t) = − 1

x2
f(t) (178)

ut(x, t) = log(x)f ′(t) + g′(t). (179)
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Again we use the PDE (18) and compute

− 1

2
f(t) = log(x)f ′(t) + g′(t), t ≥ 0, x ∈ R, (180)

so we must have that f ′(t) = 0. By the initial condition we get that f ≡ 1, hence we deduce
that g′(t) = − 1

2 , t ≥ 0. This implies that

f(t) =1, t ≥ 0, (181)

g(t) =− t

2
, t ≥ 0. (182)

Thus the differential input of the logarithmic forward performance process is given by

u(x, t) = log(x)− t

2
, t ≥ 0. (183)

• Case 3: U(x) = −e−αx
We propose the ansatz: u(x, t) = −e−αxf(t), with f(0) = 1. Then

ux(x, t) = αe−αxf(t) (184)

uxx(x, t) = −α2e−αxf(t) (185)

ut(x, t) = −e−αxf ′(t). (186)

As before by the PDE (18) 1
2f(t) = f ′(t), t ≥ 0, so with the initial condition we get that

f(t) =e
t
2 , t ≥ 0, (187)

which yields the exponential case differential input function

u(x, t) =− e−αx+ t
2 , t ≥ 0. (188)

The respective optimal forward performance process is then obtained by using Definition (166)
and plugging in the stochastic inputs into the respective differential input function. This gives us

1. Power forward utility: Ut(x) =
1

p

( x
Nt

)p
e
q
2AtZt, t ≥ 0, (189)

2. Logarithmic forward utility: Ut(x) =
(

log
( x
Nt

)
− At

2

)
Zt, t ≥ 0, (190)

3. Exponential forward utility: Ut(x) = − exp
(
− α

( x
Nt

)
+
At
2

)
Zt, t ≥ 0. (191)

Recalling that R(x, t) = −
∂
∂xUt(x)
∂2

∂x2
Ut(x)

, we take derivatives in the above expressions and obtain that

1. Power forward utility: R(x, t) =
x

1− p
, t ≥ 0, (192)

2. Logarithmic forward utility: R(x, t) = x, t ≥ 0, (193)

3. Exponential forward utility: R(x, t) =
Nt
α
, t ≥ 0, (194)

which concludes the proof.
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A.3 Proof of Lemma 3 (Power forward utility pair of investment and
consumption) and Corollary 5.2.1

Proof of Lemma 3. We want to find a pair of functions UX , UC satisfying the definition of an
Itô-type forward utility pair (Definition 4) with initial condition U(x) = xp

p , i.e. UX must satisfy

dUX(x, t) =
(1

2

‖UXx (x, t)λt + σtrt σt(σ
tr
t σt)

−1vx(x, t)‖2

UXxx(x, t)
− Ũ (c)

(
Ux(x, t), t

))
dt+

v(x, t) · dWt. (195)

Motivated by the observation from El Karoui et al. [13] that power-type forward utility pairs
of investment and consumption have a separable solution, and also informed by the forward
performance processes of investment characterised in Theorem 4.1 we propose the ansatz

UX(x, t) =u(1)(
x

Nt
, t)Zt, u(1)(x, t) =

xp

p
ef(t), (196)

UC(c, t) =u(2)(
c

Nt
, t)Zt, u(2)(c, t) =

cp

p
Kef(t), K 6= 0, (197)

where N,Z are the benchmark and market view process as defined in (15) and (16) respectively,
and f(·) has initial condition f(0) = 0.
Step 1: We start by computing the dynamics of UX

dUX(x, t) =d
(
u(1)(

x

Nt
, t)Zt

)
= Ztd

(
u(1)(

x

Nt
, t)
)

+ u(1)(
x

Nt
, t)dZt + d

〈
u(1)(

x

N
, ·), Z

〉
t
. (198)

We compute the dynamics of each term separately using Itô’s formula

d
(
u(1)(

x

Nt
, t)
)

=u
(1)
t (

x

Nt
, t)dt+ u(1)x (

x

Nt
, t)xd

( 1

Nt

)
+

1

2
u(1)xx (

x

Nt
, t)x2d

〈
1

N

〉
t

(199)

=
(
u
(1)
t +

( x
Nt
δtrt δt −

x

Nt
δtrt λt

)
u(1)x +

1

2

x2

N2
t

δtrt δtu
(1)
xx

)
− u(1)x

x

Nt
δt · dWt, (200)

where we dropped the arguments ( x
Nt
, t) in the second line for readability (and we will continue

to do so). We recall that

dZt = Ztφt · dWt, (201)

thus we get that

d
〈
u(1)(

x

N
, ·), Z

〉
t

= −u(1)x
x

Nt
δtrt φtZtdt. (202)

Combining the terms and plugging them back into (198) we get

dUX(x, t) =Zt

(
u
(1)
t +

( x
Nt
δtrt δt −

x

Nt
δtrt λt

)
u(1)x +

1

2

x2

N2
t

δtrt δtu
(1)
xx − u(1)x

x

Nt
δtrt φt

)
dt+

Zt

(
u(1)φt − u(1)x

x

Nt
δt

)
· dWt, (203)

so the drift b(·, ·) and volatility process v(·, ·) of the Itô decomposition of UX(·, ·) are given by

b(x, t) = Zt

(
u
(1)
t +

( x
Nt
δtrt δt −

x

Nt
δtrt λt

)
u(1)x +

1

2

x2

N2
t

δtrt δtu
(1)
xx − u(1)x

x

Nt
δtrt φt

)
(204)

v(x, t) = Zt

(
u(1)φt − u(1)x

x

Nt
δt

)
. (205)
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Step 2: We need to show that the drift satisfies (107), i.e.

b(x, t) =
1

2

‖UXx (x, t)λt + σtrt σt(σ
tr
t σt)

−1vx(x, t)‖2

UXxx(x, t)
− Ũ (c)

(
Ux(x, t), t

)
. (206)

We compute the derivatives for the above formula

UXx (x, t) =u(1)x (
x

Nt
, t)

Zt
Nt

=
( x
Nt

)p−1
ef(t)

Zt
Nt

(207)

UXxx(x, t) =u(1)xx (
x

Nt
, t)

Zt
N2
t

= (p− 1)
( x
Nt

)p−2
ef(t)

Zt
N2
t

(208)

UCx (c, t) =u(2)x (
c

Nt
, t)

Zt
Nt

=
( c
Nt

)p−1
Kef(t)

Zt
Nt
. (209)

We recall that the convex conjugate is given by

Ũ (c)(UXx (x, t), t) = UC(IC(UXx (x, t)), t)− UXx (x, t)IC(UXx (x, t)). (210)

We compute the inverse marginal IC(·), given by the spatial inverse of UCx (·, ·), and evaluate it
at the spatial derivative of UX(·, ·)

IC(UXx (x, t)) =(UCx )−1
(
UXx (x, t)

)
(211)

=xK−
1
p−1 , (212)

which gives that

Ũ (c)(UXx (x, t), t) =
(1− p)
p

K1−q( x
Nt

)p
ef(t)Zt. (213)

We also compute the spatial derivative of the volatility process above (205)

vx(x, t) =
∂

∂x

(
Zt

(
u(1)φt − u(1)x

x

Nt
δt

))
(214)

=Zt

(
u(1)x (

x

Nt
, t)

φt
Nt
− u(1)x (

x

Nt
, t)

δt
Nt
− u(1)xx (

x

Nt
, t)

δtx

N2
t

)
(215)

=Zt
xp−1

Np
t

ef(t)
(
φt − pδt

)
. (216)

Plugging the above derivatives into (206) gives

b(x, t) =
1

2

‖Zt x
p−1

Npt
ef(t)

(
λt + ηt

(
φt − pδt

))
‖2

(p− 1)x
p−2

Npt
Ztef(t)

+
p− 1

p
K1−q( x

Nt

)p
ef(t)Zt (217)

=
( x
Nt

)pZtef(t)
p

(1

2
q‖λt + ηt

(
φt − pδt

)
‖2 + (p− 1)K1−q

)
(218)

=: r.h.s., (219)

where ηt := σtrt σt(σ
tr
t σt)

−1. Recall ηtφt = φt and ηtδt = δt by assumption.
Step 3: We now want to equate the drift (204) with r.h.s. from above. For (204) we still need
the t−derivative, which is given by

u
(1)
t (

x

Nt
, t) =

1

p

( x
Nt

)p
ef(t)f ′(t). (220)
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This gives us that the drift (204) is of the form

b(x, t) =Zt

(1

p

( x
Nt

)p
ef(t)f ′(t) +

( x
Nt

)p−1
ef(t)

x

Nt

(
δtrt δt − δtrt λt − δtrt φt

)
+

1

2
(p− 1)

( x
Nt

)p−2 x2
N2
t

δtrt δte
f(t)
)

(221)

=
( x
Nt

)p ef(t)Zt
p

(
f ′(t) + p

(
δtrt δt − δtrt λt − δtrt φt +

1

2
(p− 1)δtrt δt

)
(222)

=: l.h.s. (223)

We equate l.h.s.
!
= r.h.s. to deduce that f(·) solves

f ′(t) =
1

2
q‖λt + φt − pδt‖2 + (p− 1)K1−q + pδtrt

(
λt + φt −

1

2
(p+ 1)δt

)
, t ≥ 0, (224)

f(0) = 0. (225)

Thus, we obtain that

UX(x, t) =
1

p

( x
Nt

)p
ef(t)Zt (226)

UC(c, t) =
1

p

( c
Nt

)p
Kef(t)Zt (227)

for f(t) =

∫ t

0

(1

2
q‖λs + φs − pδs‖2 + (p− 1)K1−q + pδtrs

(
λs + φs −

1

2
(p+ 1)δs

))
ds, t ≥ 0.

Proof of Corollary 5.2.1. We recall Theorem 5.2 which states that the optimal policies for an
Itô-type forward utility pair are given by

π∗t = (σtσ
tr
t )−1σt

(
RX(X∗, t)λt −

1

UXxx(X∗, t)
vx(X∗, t)

)
, t ≥ 0, (228)

c∗t = IC
(
UXx (X∗, t)

)
, t ≥ 0. (229)

We observe in the proof of Lemma 3 above that Equation (212) gives the optimal consumption
policy

c∗t = K1−q, (230)

since we know that (1 − p)(1 − q) = 1 for 1
p + 1

q = 1. For the optimal investment strategy,

we see from Equation (216) in the above proof that the derivative of the volatility process is

vx(x, t) = Zt
xp−1

Npt
ef(t)

(
φt − pδt

)
. The derivatives of the wealth performance process UX(·, ·),

given by (207), (208), imply that the risk tolerance function takes the form

RX(x, t) =
x

(1− p)
, t ≥ 0. (231)

Thus we plug the above results into the formula (228) to obtain that

π∗t = (σtσ
tr
t )−1σt

( X∗t
(1− p)

λt +
Zte

f(t)N−pt (X∗t )p−1

Ztef(t)N
−p
t (X∗t )p−2(1− p)

(φt − pδt)
)

(232)

= (σtσ
tr
t )−1σt

( X∗t
(1− p)

(
λt + φt − δt

)
+X∗t δt

)
, (233)

which proves the claim.
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A.4 Proof of Theorem 6.1

Proof. The main idea of the proof is to use tools from duality theory. More precisely, we first
derive the dual value function, and then invoke the key duality theorem to obtain the primal value
function. This then allows us to get the equation for the indifference price, which we then solve.

We start with the derivation of the dual value function (125). For the case of exponential
utility, we compute that the convex conjugate is given by Ũ(s) = s

α

(
log
(
s
α

)
− 1
)
, hence

v(n)(s, Yt, t) = ess inf
Z∈Z

E[
s

α

ZT
Zt

(
log

(
s

α

ZT
Zt

)
− 1
)

+ s
ZT
Zt
nh(YT , ST )|Ft] (234)

=
s

α

(
log
( s
α

)
− 1
)

+
s

α
ess inf
Z∈Z

E[
ZT
Zt

log

(
ZT
Zt

)
+ nαh(YT , ST )|Ft] (235)

= Ũ(s) +
s

α
ess inf
Q∈M

{Ht(Q|P) + nαEQ[h(YT , ST )|Ft]}. (236)

Define ξt := ess infQ∈M{Ht(Q|P) + nαEQ[h(YT , ST )|Ft]. Then the key theorem of duality (see
Section 1 in Delbaen et al. [12], or the time-dependent version given in Monoyios [38], Theorem
4.5 for the case n = −1) asserts that

u(n)(Xπ
t , Yt, t) = ess inf

s>0
{v(n)(s, Yt, t) +Xπ

t s}, 0 ≤ t ≤ T. (237)

By first order conditions we deduce that s∗ = αe−αX
π
t −ξt , so we get that the primal value function,

conditioned on Xπ
t = x, Yt = y, is given by

u(n)(x, y, t) = − exp
(
− αx− ess inf

Q∈M
{Ht(Q|P) + nαEQ[h(YT , ST )|Xπ

t = x, Yt = y]
)
. (238)

This asserts the first part of the theorem, which has already been established by Delbaen et al.
[12], Theorem 1, and the time-dependent version by Monoyios [38], Theorem 4.5, for the case
n = −1.

Recall the definition of the indifference price (126), which requires that we find the value
function for n = 0. We deduce that

u(0)(x, t) = −e−αx−Ht(Q
E |P), (239)

The definition of the indifference price (126) together with (238) and (239) gives that

αnp(n)(t, x, y) = ess inf
Q∈M

{nαEQ[h(YT , ST )|Ft] +Ht(Q|P)−Ht(QE |P)}. (240)

Using − ess inf −C = ess supC for some random variable C and Proposition 4.7 in Monoyios [38],
which asserts that H(Q1|Q2) = Ht(Q1|P)−Ht(Q2|P), for t ≥ 0,Q1/2 ∈M, we derive that

p(n)(x, y, t) =

{
ess infQ∈M{EQ[h(YT , ST )|Ft] + 1

nαHt(Q|Q
E)}, n ≥ 0,

ess supQ∈M{EQ[h(YT , ST )Ft]− 1
|n|αHt(Q|Q

E)}, n ≤ 0.
(241)
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Boston, 2007.

[42] Marek Musiela and Thaleia Zariphopoulou. Optimal asset allocation under forward expo-
nential performance criteria. In Stewart Ethier, Jin Feng, and Richard Stockbridge, editors,
Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz, volume 4 of IMS
Collections, pages 285–300. Institute of Mathematical Statistics, 2008.

[43] Marek Musiela and Thaleia Zariphopoulou. The backward and forward dynamic utilities and
the associated pricing systems: Case study of the binomial model. Parts of it appeared in
Indifference pricing (2009, ed. R. Carmona, Princeton University Press), 2009.

[44] Marek Musiela and Thaleia Zariphopoulou. Portfolio choice under dynamic investment per-
formance criteria. Quantitative Finance, 9(2):161–170, 2009.

[45] Marek Musiela and Thaleia Zariphopoulou. Portfolio choice under space-time monotone
performance criteria. SIAM J. Financial Math., 1:326–365, 2010.



47 MSc MCF Dissertation Trinity 2019

[46] Marek Musiela and Thaleia Zariphopoulou. Stochastic partial differential equations and
portfolio choice. In C. Chiarella and A. Novikov, editors, Contemporary Quantitative Finance:
Essays in Honour of Eckhard Platen, pages 195–216. Springer, 2010.

[47] Marek Musiela and Thaleia Zariphopoulou. Initial investment choice and optimal future
allocations under time-monotone performance criteria. International Journal of Theoretical
and Applied Finance, 14(1):61–81, 2011.

[48] Sergey Nadtochiy and Michael Tehranchi. Optimal investment for all time horizons and
Martin boundary of space-time diffusions. Mathematical Finance, 27(2):438–470, 2017.

[49] Sergey Nadtochiy and Thaleia Zariphopoulou. A class of homothetic forward investment
performance processes with non-zero volatility. In Y. Kabanov, M. Rutkowski, and T. Za-
riphopoulou, editors, Inspired by Finance: The Musiela Festschrift, pages 475–505. Springer-
Verlag, Cham, 2014.

[50] Huyên Pham. Continuous-time stochastic control and optimization with financial applica-
tions, volume 61 of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin,
2009.

[51] John Quiggin. A theory of anticipated utility. Journal of Economic Behavior and Organiza-
tion, 3(4):323–343, 1982.

[52] John Quiggin. Generalized expected utility theory: the rank-dependent model. Boston: Kluwer
Academic Publishers, 1993.

[53] L. C. G. Rogers. Optimal investment. SpringerBriefs in Quantitative Finance. Springer, 2013.

[54] Mykhaylo Shkolnikov, Ronnie Sircar, and Thaleia Zariphopoulou. Asymptotic analysis of
forward performance processes in incomplete markets and their ill-posed HJB equations.
SIAM J. Financial Math., 7(1):588–618, 2016.

[55] Steven Shreve. Stochastic calculus for finance II, volume 1. Springer-Verlag, New York, 2004.

[56] Thaleia Zariphopoulou. A solution approach to valuation with unhedgeable risks. Finance
and Stochastics, 5:61–82, 2001.

[57] Thaleia Zariphopoulou. Optimal asset allocation in a stochastic factor model - an overview
and open problems. In Hansjörg Albrecher, Wolfgang Runggaldier, and Walter Schacher-
mayer, editors, Advanced Financial Modelling, volume 8 of Radon Series in Computational
and Applied Mathematics, pages 427–453. Walter de Gruyter, 2009.

[58] Thaleia Zariphopoulou and Gordan Zitkovic. Maturity-independent risk measures. SIAM J.
Financial Math., 1(1):266–288, 2010.

[59] Gordan Zitkovic. A dual characterization of self-generation and exponential forward perfor-
mances. The Annals of Applied Probability, 19(6):2176–2210, 2009.


